scholarly journals Inhibition of Hsp70 ATPase Activity and Protein Renaturation by a Novel Hsp70-binding Protein

1998 ◽  
Vol 273 (49) ◽  
pp. 32883-32888 ◽  
Author(s):  
Deborah A. Raynes ◽  
Vince Guerriero
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Rong Liu ◽  
Neil Billington ◽  
Yi Yang ◽  
Charles Bond ◽  
Amy Hong ◽  
...  

AbstractMyosin-7a, despite being monomeric in isolation, plays roles in organizing actin-based cell protrusions such as filopodia, microvilli and stereocilia, as well as transporting cargoes within them. Here, we identify a binding protein for Drosophila myosin-7a termed M7BP, and describe how M7BP assembles myosin-7a into a motile complex that enables cargo translocation and actin cytoskeletal remodeling. M7BP binds to the autoinhibitory tail of myosin-7a, extending the molecule and activating its ATPase activity. Single-molecule reconstitution show that M7BP enables robust motility by complexing with myosin-7a as 2:2 translocation dimers in an actin-regulated manner. Meanwhile, M7BP tethers actin, enhancing complex’s processivity and driving actin-filament alignment during processive runs. Finally, we show that myosin-7a-M7BP complex assembles actin bundles and filopodia-like protrusions while migrating along them in living cells. Together, these findings provide insights into the mechanisms by which myosin-7a functions in actin protrusions.


1990 ◽  
Vol 5 (6) ◽  
pp. 585-589 ◽  
Author(s):  
Ari Sitaramayya ◽  
Shereen Hakki

AbstractThe role of 48-kDa protein in Visual transduction remains unresolved. Two hypotheses for its role in quenching the light activation of cyclic GMP cascade suggest that the protein binds to either phosphodiesterase or phosphorylated rhodopsin. Since the protein is also reported to bind ATP, we anticipated that the protein may have ATP hydrolyzing activity, and in analogy with the GTP-binding protein of the rod outer segments, such activity may be greatly enhanced by the elements of transduction cyclic GMP cascade, permitting the protein to function cyclically as GTP-binding protein does. We found that purified 48-kDa protein hydrolyzes ATP but at a slow rate of 0.04–0.05 per min. The Km for ATP is about 45–65 μM. The activity is inhibited noncompetitively by ADP with a Ki of about 50 μM. The ATPase activity of 48-kDa protein is not affected by rhodopsin, bleached rhodopsin, phosphorylated rhodopsin, unactivated cyclic GMP phosphodiesterase, or phosphodiesterase (PDE) activated by GMP PNP-bound G-protein. These data show that although 48-kDa protein has ATPase activity, lack of regulation of this activity by the elements of visual transduction makes it unlikely for this activity to have a role in quenching the light activation of cyclic GMP cascade.


2000 ◽  
Vol 352 (1) ◽  
pp. 165-173 ◽  
Author(s):  
Sang Yeul HAN ◽  
Dong Yoon PARK ◽  
Sang Dai PARK ◽  
Seung Hwan HONG

In this study we show the interaction of N-ethylmaleimide-sensitive fusion protein (NSF) with a small GTP-binding protein, Rab6. NSF is an ATPase involved in the vesicular transport within eukaryotic cells. Using the yeast two-hybrid system, we have isolated new NSF-binding proteins from the rat lung cDNA library. One of them was Rab6, which is involved in the vesicular transport within the Golgi and trans-Golgi network as a Ras-like GTPase. We demonstrated that the N-terminal domain of NSF interacted with the C-terminal domain of Rab6, and these proteins were co-immunoprecipitated from the rat brain extract. This interaction was maintained preferentially in the presence of hydrolysable ATP. Recombinant NSF-His6 can also bind to C-terminal Rab6–glutathione S-transferase under the conditions to allow the ATP hydrolysis. Surprisingly, Rab6 stimulates the ATPase activity of NSF by approx. 2-fold as does α-soluble NSF attachment protein receptor. Anti-Rab6 polyclonal antibodies significantly inhibited the Rab6-stimulated ATPase activity of NSF. Furthermore, we found that Rab3 and Rab4 can also associate with NSF and stimulate its ATPase activity. Taken together, we propose a model in which Rab can form an ATP hydrolysis-regulated complex with NSF, and function as a signalling molecule to deliver the signal of vesicle fusion through the interaction with NSF.


2020 ◽  
Vol 295 (16) ◽  
pp. 5245-5256 ◽  
Author(s):  
Siwar Sabrialabed ◽  
Janet G. Yang ◽  
Elon Yariv ◽  
Nir Ben-Tal ◽  
Oded Lewinson

Sulfur is essential for biological processes such as amino acid biogenesis, iron–sulfur cluster formation, and redox homeostasis. To acquire sulfur-containing compounds from the environment, bacteria have evolved high-affinity uptake systems, predominant among which is the ABC transporter family. Theses membrane-embedded enzymes use the energy of ATP hydrolysis for transmembrane transport of a wide range of biomolecules against concentration gradients. Three distinct bacterial ABC import systems of sulfur-containing compounds have been identified, but the molecular details of their transport mechanism remain poorly characterized. Here we provide results from a biochemical analysis of the purified Escherichia coli YecSC-FliY cysteine/cystine import system. We found that the substrate-binding protein FliY binds l-cystine, l-cysteine, and d-cysteine with micromolar affinities. However, binding of the l- and d-enantiomers induced different conformational changes of FliY, where the l- enantiomer–substrate-binding protein complex interacted more efficiently with the YecSC transporter. YecSC had low basal ATPase activity that was moderately stimulated by apo FliY, more strongly by d-cysteine–bound FliY, and maximally by l-cysteine– or l-cystine–bound FliY. However, at high FliY concentrations, YecSC reached maximal ATPase rates independent of the presence or nature of the substrate. These results suggest that FliY exists in a conformational equilibrium between an open, unliganded form that does not bind to the YecSC transporter and closed, unliganded and closed, liganded forms that bind this transporter with variable affinities but equally stimulate its ATPase activity. These findings differ from previous observations for similar ABC transporters, highlighting the extent of mechanistic diversity in this large protein family.


Cell ◽  
1991 ◽  
Vol 67 (1) ◽  
pp. 155-167 ◽  
Author(s):  
David S. Weiss ◽  
Jacques Batut ◽  
Karl E. Klose ◽  
John Keener ◽  
Sydney Kustu

2001 ◽  
Vol 15 (13) ◽  
pp. 2463-2470 ◽  
Author(s):  
WU-GUO DENG ◽  
KE-HE RUAN ◽  
MIN DU ◽  
MICHAEL A. SAUNDERS ◽  
KENNETH K. WU

2004 ◽  
Vol 186 (4) ◽  
pp. 1021-1028 ◽  
Author(s):  
Miriam Hopfe ◽  
Birgit Henrich

ABSTRACT Most ATPases, involved in energy-driven processes, act in the cytoplasm. However, external membrane-bound ATPases have also been described in parasites and eukaryotic cells. In Mycoplasma hominis, a bacterium lacking a cell wall, the surface-exposed substrate-binding protein OppA of an oligopeptide permease (Opp) contains an ATP binding P-loop structure in the C-terminal region. With ATP affinity chromatography and tryptic digestion in the presence or absence of ATP, the functionality of the Mg2+-dependent ATP binding site is demonstrated. In addition to ATP, ADP also could bind to OppA. The presence of an ATPase activity on the surface of M. hominis is indicated by the inactivation of ATP hydrolyzing activity of intact mycoplasma cells by the impermeable ATPase inhibitor 4′,4′-diisothiocyanostilbene-2′,2′-disulfonic acid and influenced by the ATP analog 5′-fluorosulfonyl-benzoyladenosine. Comparing equimolar amounts of OppA in intact mycoplasma cells and in the purified form indicated that more than 80% of the surface-localized ATPase activity is derived from OppA, implying that OppA is the main ATPase on the surface of mycoplasma cells. Together, these data present the first evidence that the cytoadhesive substrate binding protein OppA of the oligopeptide permease also functions as an ecto-ATPase in Mycoplasma hominis.


1981 ◽  
Vol 6 (2) ◽  
pp. 95-99 ◽  
Author(s):  
R.B. Koch ◽  
Hernan Rossi ◽  
Steven Price

2014 ◽  
Vol 23 (2) ◽  
pp. 75
Author(s):  
Humberto Muzi-Filho ◽  
Dominick Rodrigues Alves de Souza ◽  
Christianne Bretas Vieira Scaramello ◽  
Valeria Do Monti Nascimento Cunha

ObjectiveThe present work investigated the effect of ivermectin on Ca2+ content and on the Ca2+-ATPase activity (represented by the plasma membrane Ca2+-ATPase and the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase present in rat vas deferens.MethodsThe assays were carried out using ultracentrifuged homogenate preparations from rat vas deferens in the presence or absence of the 12-kDa FK506-binding protein-Ca2+ release channel complex. Measures of Ca2+ content and Ca2+ ATPase activity were then carried out in function of different concentrations of ivermectin. ResultsThe data show that ivermectin (10 μM) reduces the sarcoplasmic reticulum Ca2+ content in FK506-binding protein (+) and FK506-binding protein (-) fractions of ultracentrifuged homogenate from rat vas deferens (inhibition of 50% and 40%, respectively, p<0.05) and inhibits both the activities of sarcoplasmic/endoplasmic reticulum Ca2+-ATPase and plasma membrane Ca2+-ATPases pumps (33% and 16%, respectively, p<0.05).ConclusionThese data suggest that ivermectin effects Ca2+ handling in the rat vas deferens, indicating that this drug could alter the contractility of this smooth muscle. Therefore, ivermectin could be an interesting pharmacological tool to alter the physiological function of vas deferens and to manipulate the fertility status of male rats.Indexing terms: Calcium. Ivermectin. Rats.


Sign in / Sign up

Export Citation Format

Share Document