scholarly journals Cold Shock Domain Factors Activate the Granulocyte-Macrophage Colony-stimulating Factor Promoter in Stimulated Jurkat T Cells

2000 ◽  
Vol 276 (11) ◽  
pp. 7943-7951 ◽  
Author(s):  
Peter Diamond ◽  
M. Frances Shannon ◽  
Mathew A. Vadas ◽  
Leeanne S. Coles
Blood ◽  
1991 ◽  
Vol 77 (4) ◽  
pp. 780-786 ◽  
Author(s):  
MM Hallet ◽  
V Praloran ◽  
H Vie ◽  
MA Peyrat ◽  
G Wong ◽  
...  

Abstract Macrophage colony stimulating factor (CSF-1) is one of several cytokines that control the differentiation, survival, and proliferation of monocytes and macrophages. A set of 11 human T-cell clones, chosen for their phenotypic diversity, were tested for their ability to express CSF-1 mRNA. After 5 hours of stimulation with phorbol myristate acetate (PMA) + calcium ionophore (Cal), all T-cell clones expressed a major 4-kb transcript, a less abundant 2-kb transcript, and several other minor species. This pattern of expression is typical for CSF-1 mRNAs. Furthermore, of the two alloreactive T-cell clones analyzed, only one showed a definitive message for CSF-1 on specific antigenic stimulation, but with delayed kinetics and less efficiency. Both conditions of stimulation induced the release of CSF-1 protein by T cells in the culture medium. Together, these findings demonstrate for the first time that normal T cells are able to produce CSF-1, previous reports being limited to two cases of tumoral cells of the T-cell lineage.


1990 ◽  
Vol 10 (3) ◽  
pp. 1281-1286 ◽  
Author(s):  
R Schreck ◽  
P A Baeuerle

The expression of the gene encoding the granulocyte-macrophage colony-stimulating factor (GM-CSF) is induced upon activation of T cells with phytohemagglutinin and active phorbolester and upon expression of tax1, a transactivating protein of the human T-cell leukemia virus type I. The same agents induce transcription from the interleukin-2 receptor alpha-chain and interleukin-2 genes, depending on promoter elements that bind the inducible transcription factor NF-kappa B (or an NF-kappa B-like factor). We therefore tested the possibility that the GM-CSF gene is also regulated by a cognate motif for the NF-kappa B transcription factor. A recent functional analysis by Miyatake et al. (S. Miyatake, M. Seiki, M. Yoshida, and K. Arai, Mol. Cell. Biol. 8:5581-5587, 1988) described a short promoter region in the GM-CSF gene that conferred strong inducibility by T-cell-activating signals and tax1, but no NF-kappa B-binding motifs were identified. Using electrophoretic mobility shift assays, we showed binding of purified human NF-kappa B and of the NF-kappa B activated in Jurkat T cells to an oligonucleotide comprising the GM-CSF promoter element responsible for mediating responsiveness to T-cell-activating signals and tax1. As shown by a methylation interference analysis and oligonucleotide competition experiments, purified NF-kappa B binds at positions -82 to -91 (GGGAACTACC) of the GM-CSF promoter sequence with an affinity similar to that with which it binds to the biologically functional kappa B motif in the beta interferon promoter (GGGAAATTCC). Two kappa B-like motifs at positions -98 to -108 of the GM-CSF promoter were also recognized but with much lower affinities. Our data provide strong evidence that the expression of the GM-CSF gene following T-cell activation is controlled by binding of the NF-kappa B transcription factor to a high-affinity binding site in the GM-CSF promoter.


Blood ◽  
1987 ◽  
Vol 69 (4) ◽  
pp. 1259-1261
Author(s):  
J Horiguchi ◽  
MK Warren ◽  
D Kufe

The macrophage-specific colony-stimulating factor (CSF-1, M-CSF) regulates the survival, growth and differentiation of monocytes. We have recently demonstrated that phorbol ester induces expression of CSF- 1 in human monocytes. These findings suggested that activated monocytes are capable of producing their own lineage-specific CSF. The present studies demonstrate that the granulocyte-macrophage colony-stimulating factor (GM-CSF) also induces CSF-1 transcripts in monocytes. Furthermore, we demonstrate that the detection of CSF-1 RNA in GM-CSF- treated monocytes is associated with synthesis of the CSF-1 gene product. The results thus suggest that GM-CSF may indirectly control specific monocyte functions through the regulation of CSF-1 production. These findings indicate another level of interaction between T cells and monocytes.


2003 ◽  
Vol 60 (5) ◽  
pp. 531-538 ◽  
Author(s):  
Miodrag Colic ◽  
Dusan Jandric ◽  
Zorica Stojic-Vukanic ◽  
Jelena Antic-Stankovic ◽  
Petar Popovic ◽  
...  

Several laboratories have developed culture systems that allow the generation of large numbers of human dendritic cells (DC) from monocytes using granulocyte-macrophage colony stimulating factor (GM-CSF), and interleukin-4 (IL-4). In this work we provided evidence that GM-CSF (100 ng/ml) in combination with a low concentration of IL-4 (5 ng/ml) was efficient in the generation of immature, non-adherent, monocyte-derived DC as the same concentration of GM-CSF, and ten times higher concentration of IL-4 (50 ng/ml). This conclusion was based on the similar phenotype profile of DC such as the expression of CD1a, CD80, CD86, and HLA-DR, down-regulation of CD14, and the absence of CD83, as well as on their similar allostimulatory activity for T cells. A higher number of cells remained adherent in cultures with lower concentrations of IL-4 than in cultures with higher concentrations of the cytokine. However, most of these adherent cells down-regulated CD14 and stimulated the proliferation of alloreactive T cells. In contrast adherent cells cultivated with GM-CSF alone were predominantly macrophages as judged by the expression of CD14 and the inefficiency to stimulate alloreactive T cells. DC generated in the presence of lower concentrations of IL-4 had higher proapoptotic potential for the Jurkat cell line than DC differentiated with higher concentrations of IL-4, suggesting their stronger cytotoxic, anti-tumor effect.


1998 ◽  
Vol 188 (1) ◽  
pp. 133-143 ◽  
Author(s):  
Chiara Zilocchi ◽  
Antonella Stoppacciaro ◽  
Claudia Chiodoni ◽  
Mariella Parenza ◽  
Nadia Terrazzini ◽  
...  

We analyzed the ability of interferon (IFN)-γ knockout mice (GKO) to reject a colon carcinoma transduced with interleukin (IL)-12 genes (C26/IL-12). Although the absence of IFN-γ impaired the early response and reduced the time to tumor onset in GKO mice, the overall tumor take rate was similar to that of BALB/c mice. In GKO mice, C26/IL-12 tumors had a reduced number of infiltrating leukocytes, especially CD8 and natural killer cells. Analysis of the tumor site, draining nodes, and spleens of GKO mice revealed reduced expression of IFN- inducible protein 10 and monokine induced by γ-IFN. Despite these defects, GKO mice that rejected C26/IL-12 tumor, and mice that were primed in vivo with irradiated C26/IL-12 cells, showed the same cytotoxic T lymphocyte activity but higher production of granulocyte/macrophage colony–stimulating factor (GM-CSF) as compared with control BALB/c mice. Treatment with monoclonal antibodies against GM-CSF abrogated tumor regression in GKO but not in BALB/c mice. CD4 T lymphocytes, which proved unnecessary or suppressive during rejection of C26/IL-12 cells in BALB/c mice, were required for tumor rejection in GKO mice. CD4 T cell depletion was coupled with a decline in GM-CSF expression by lymphocytes infiltrating the tumors or in the draining nodes, and with the reduction and disappearance of granulocytes and CD8 T cells, respectively, in tumor nodules. These results suggest that GM-CSF can substitute for IFN-γ in maintaining the CD8–polymorphonuclear leukocyte cross-talk that is a hallmark of tumor rejection.


Sign in / Sign up

Export Citation Format

Share Document