scholarly journals Phosphorylation of ORC2 Protein Dissociates Origin Recognition Complex from Chromatin and Replication Origins

2012 ◽  
Vol 287 (15) ◽  
pp. 11891-11898 ◽  
Author(s):  
Kyung Yong Lee ◽  
Sung Woong Bang ◽  
Sang Wook Yoon ◽  
Seung-Hoon Lee ◽  
Jong-Bok Yoon ◽  
...  

During the late M to the G1 phase of the cell cycle, the origin recognition complex (ORC) binds to the replication origin, leading to the assembly of the prereplicative complex for subsequent initiation of eukaryotic chromosome replication. We found that the cell cycle-dependent phosphorylation of human ORC2, one of the six subunits of ORC, dissociates ORC2, -3, -4, and -5 (ORC2–5) subunits from chromatin and replication origins. Phosphorylation at Thr-116 and Thr-226 of ORC2 occurs by cyclin-dependent kinase during the S phase and is maintained until the M phase. Phosphorylation of ORC2 at Thr-116 and Thr-226 dissociated the ORC2–5 from chromatin. Consistent with this, the phosphomimetic ORC2 protein exhibited defective binding to replication origins as well as to chromatin, whereas the phosphodefective protein persisted in binding throughout the cell cycle. These results suggest that the phosphorylation of ORC2 dissociates ORC from chromatin and replication origins and inhibits binding of ORC to newly replicated DNA.

2012 ◽  
Vol 196 (2) ◽  
pp. 233-246 ◽  
Author(s):  
Remi Sonneville ◽  
Matthieu Querenet ◽  
Ashley Craig ◽  
Anton Gartner ◽  
J. Julian Blow

Accurate DNA replication requires proper regulation of replication licensing, which entails loading MCM-2–7 onto replication origins. In this paper, we provide the first comprehensive view of replication licensing in vivo, using video microscopy of Caenorhabditis elegans embryos. As expected, MCM-2–7 loading in late M phase depended on the prereplicative complex (pre-RC) proteins: origin recognition complex (ORC), CDC-6, and CDT-1. However, many features we observed have not been described before: GFP–ORC-1 bound chromatin independently of ORC-2–5, and CDC-6 bound chromatin independently of ORC, whereas CDT-1 and MCM-2–7 DNA binding was interdependent. MCM-3 chromatin loading was irreversible, but CDC-6 and ORC turned over rapidly, consistent with ORC/CDC-6 loading multiple MCM-2–7 complexes. MCM-2–7 chromatin loading further reduced ORC and CDC-6 DNA binding. This dynamic behavior creates a feedback loop allowing ORC/CDC-6 to repeatedly load MCM-2–7 and distribute licensed origins along chromosomal DNA. During S phase, ORC and CDC-6 were excluded from nuclei, and DNA was overreplicated in export-defective cells. Thus, nucleocytoplasmic compartmentalization of licensing factors ensures that DNA replication occurs only once.


1997 ◽  
Vol 110 (2) ◽  
pp. 179-189 ◽  
Author(s):  
T. Asada ◽  
R. Kuriyama ◽  
H. Shibaoka

Analysis of a cDNA for a 125 kDa polypeptide, previously isolated from phragmoplasts of tobacco BY-2 cells as a candidate for a plus end-directed microtubule motor, revealed this polypeptide to be a novel member of the kinesin superfamily. We named this protein TKRP125 (tobacco kinesin-related polypeptide of 125 kDa). The strong similarity between TKRP125 and members of the bimC subfamily in terms of the amino acid sequence of the amino-terminal motor domain indicated that TKRP125 belonged to the bimC subfamily. An antibody against a short peptide from the motor domain of TKRP125 inhibited the GTP- or ATP-dependent translocation of phragmoplast microtubules in membrane-permeabilized BY-2 cells, suggesting a role for TKRP125 in microtubule translocation, which is considered to be involved in the formation and/or maintenance of the bipolar structure of the phragmoplast. The expression of TKRP125 was found to be cell cycle-dependent. TKRP125 was not present in cells at the G1 phase. It began to appear at the S phase and accumulated during the G2 phase. The distribution of TKRP125 changed as the arrangement of microtubules changed with the progression of the cell cycle. TKRP125 was distributed along cortical microtubules during the S phase and along microtubules in the preprophase band and perinuclear microtubules in premitotic cells. It was also present in the nucleus in premitotic cells. In cells in M phase, TKRP125 was distributed along spindle microtubules. It accumulated at the equatorial plane of the spindle as the spindle elongated. In cytokinetic cells, TKRP125 was colocalized with phragmoplast microtubules. These observations suggest the possible involvement of TKRP125 in the cell cycle-dependent changes in arrays of microtubules, including the organization of the phragmoplast, and in the movement of chromosomes in anaphase cells.


1999 ◽  
Vol 112 (12) ◽  
pp. 2011-2018 ◽  
Author(s):  
A. Rowles ◽  
S. Tada ◽  
J.J. Blow

During late mitosis and early G1, a series of proteins are assembled onto replication origins that results in them becoming ‘licensed’ for replication in the subsequent S phase. In Xenopus this first involves the assembly onto chromatin of the Xenopus origin recognition complex XORC, and then XCdc6, and finally the RLF-M component of the replication licensing system. In this paper we examine changes in the way that XORC associates with chromatin in the Xenopus cell-free system as origins become licensed. Restricting the quantity of XORC on chromatin reduced the extent of replication as expected if a single molecule of XORC is sufficient to specify a single replication origin. During metaphase, XOrc1 associated only weakly with chromatin. In early interphase, XOrc1 formed a strong complex with chromatin, as evidenced by its resistance to elution by 200 mM salt, and this state persisted when XCdc6 was assembled onto the chromatin. As a consequence of origins becoming licensed the association of XOrc1 and XCdc6 with chromatin was destabilised, and XOrc1 became susceptible to removal from chromatin by exposure to either high salt or high Cdk levels. At this stage the essential function for XORC and XCdc6 in DNA replication had already been fulfilled. Since high Cdk levels are required for the initiation of DNA replication, this ‘licensing-dependent origin inactivation’ may contribute to mechanisms that prevent re-licensing of replication origins once S phase has started.


2021 ◽  
Author(s):  
Yulong Li ◽  
Alexander J. Hartemink ◽  
David MacAlpine

Origins of DNA replication are specified by the ordered recruitment of replication factors in a cell cycle dependent manner. The assembly of the pre-replicative complex in G1 and the pre-initiation complex prior to activation in S-phase are well characterized; however, the interplay between the assembly of these complexes and the local chromatin environment is less well understood. To investigate the dynamic changes in chromatin organization at and surrounding replication origins, we used micrococcal nuclease (MNase) to generate genome-wide chromatin occupancy profiles of nucleosomes, transcription factors and replication proteins through consecutive cell cycles in Saccharomyces cerevisiae. During each G1 phase of two consecutive cell cycles, we observed the downstream repositioning of the origin-proximal +1 nucleosome and an increase in protected DNA fragments spanning the ARS consensus sequence (ACS) indicative of pre-RC assembly. We also found that the strongest correlation between the chromatin occupancy at the ACS and origin efficiency occurred in early S-phase consistent with the rate limiting formation of the Cdc45-Mcm2-7-GINS (CMG) complex being a determinant of origin activity. Finally, we observed nucleosome disruption and disorganization emanating from replication origins and traveling with the elongating replication forks across the genome in S-phase, likely reflecting the disassembly and assembly of chromatin ahead of and behind the replication fork, respectively. These results provide insights into cell cycle-regulated chromatin dynamics and how they relate to the regulation of origin activity.


1997 ◽  
Vol 8 (8) ◽  
pp. 1587-1601 ◽  
Author(s):  
M R Young ◽  
B K Tye

The Mcm2-7 proteins are a family of conserved proteins whose functions are essential for the initiation of DNA synthesis in all eukaryotes. These patients are constitutively present in high abundance in actively proliferating cells. In Saccharomyces cerevisiae, the intracellular concentrations of Mcms are between 100 and 500 times the number of replication origins. However, these proteins are limiting for the initiation of DNA synthesis at replication origins. Our studies indicate that only a small fraction of Mcm2 and Mcm3 tightly associates with chromatin, from late M phase to the beginning of the S phase. The rest of the Mcm2 and Mcm3 proteins are disturbed to both the cytoplasm and nucleoplasm in relatively constant levels throughout the cell cycle. We also show that S. cerevisiae Mcm3 is a phosphoprotein that exists in multiple isoforms and that distinct isoforms of Mcm2 and Mcm3 can be detected at specific stages of the cell cycle. These results suggest that the localization and function of the Mcm proteins are regulated by posttranslational phosphorylation in a manner that is consistent with a role for the Mcm proteins in restricting DNA replication to once per cell cycle.


2020 ◽  
Vol 6 (6) ◽  
pp. eaay2669 ◽  
Author(s):  
Gyubum Lim ◽  
Yeonji Chang ◽  
Won-Ki Huh

Homologous recombination is exquisitely activated only during specific cell phases. In the G1 phase, homologous recombination activity is completely suppressed. According to previous reports, the activation of homologous recombination during specific cell phases depends on the kinase activity of cyclin-dependent kinase 1 (CDK1). However, the precise regulatory mechanism and target substrates of CDK1 for this regulation have not been completely determined. Here, we report that the budding yeast CDK1, Cdc28, phosphorylates the major homologous recombination regulators Rad51 and Rad52. This phosphorylation occurs in the G2/M phase by Cdc28 in combination with G2/M phase cyclins. Nonphosphorylatable mutations in Rad51 and Rad52 impair the DNA binding affinity of Rad51 and the affinity between Rad52 rings that leads to their interaction. Collectively, our data provide detailed insights into the regulatory mechanism of cell cycle–dependent homologous recombination activation in eukaryotic cells.


1999 ◽  
Vol 112 (21) ◽  
pp. 3703-3712 ◽  
Author(s):  
Z. Lygerou ◽  
P. Nurse

The origin recognition complex (ORC) binds to the well defined origins of DNA replication in budding yeast. Homologous proteins in other eukaryotes have been identified but are less well characterised. We report here the characterisation of a fission yeast ORC complex (SpORC). Database searches identified a fission yeast Orc5 homologue. SpOrc5 is essential for cell viability and its deletion phenotype is identical to that of two previously identified ORC subunit homologues, SpOrc1 (Orp1/Cdc30) and SpOrc2 (Orp2). Co-immunoprecipitation experiments demonstrate that SpOrc1 forms a complex with SpOrc2 and SpOrc5 and gel filtration chromatography shows that SpOrc1 and SpOrc5 fractionate as high molecular mass complexes. SpORC subunits localise to the nucleus in a punctate distribution which persists throughout interphase and mitosis. We developed a chromatin isolation protocol and show that SpOrc1, 2 and 5 are associated with chromatin at all phases of the cell cycle. While the levels, nuclear localisation and chromatin association of SpORC remain constant through the cell cycle, one of its subunits, SpOrc2, is differentially modified. We show that SpOrc2 is a phosphoprotein which is hypermodified in mitosis and is rapidly converted to a faster migrating isoform as cells proceed into G(1) in preparation for S-phase.


2005 ◽  
Vol 25 (8) ◽  
pp. 2885-2898 ◽  
Author(s):  
Ramesh Narayanan ◽  
Dean P. Edwards ◽  
Nancy L. Weigel

ABSTRACT The human progesterone receptor (PR) contains multiple Ser-Pro phosphorylation sites that are potential substrates for cyclin-dependent kinases, suggesting that PR activity might be regulated during the cell cycle. Using T47D breast cancer cells stably transfected with an mouse mammary tumor virus (MMTV) chloramphenicol acetyltransferase reporter (Cat0) synchronized in different phases of the cell cycle, we found that PR function and phosphorylation is remarkably cell cycle dependent, with the highest activity in S phase. Although PR expression was reduced in the G2/M phase, the activity per molecule of receptor was markedly reduced in both G1 and G2/M phases compared to the results seen with the S phase of the cell cycle. Although PR is recruited to the MMTV promoter equivalently in the G1 and S phases, recruitment of SRC-1, SRC-3, and, consequently, CBP is reduced in G1 phase despite comparable expression levels of SRC-1 and SRC-3. In G2/M phase, site-specific phosphorylation of PR at Ser162 and at Ser294, a site previously reported to be critical for transcriptional activity and receptor turnover, was abolished. Treatment with the histone deacetylase inhibitor trichostatin A elevated G1 and G2/M activity to that of the S phase, indicating that the failure to recruit sufficient levels of active histone acetyltransferase is the primary defect in PR-mediated transactivation.


2006 ◽  
Vol 26 (5) ◽  
pp. 1955-1966 ◽  
Author(s):  
Kristopher H. McConnell ◽  
Philipp Müller ◽  
Catherine A. Fox

ABSTRACT The HMR-E silencer is a DNA element that directs the formation of silent chromatin at the HMR a locus in Saccharomyces cerevisiae. Sir1p is one of four Sir proteins required for silent chromatin formation at HMR a. Sir1p functions by binding the origin recognition complex (ORC), which binds to HMR-E, and recruiting the other Sir proteins (Sir2p to -4p). ORCs also bind to hundreds of nonsilencer positions distributed throughout the genome, marking them as replication origins, the sites for replication initiation. HMR-E also acts as a replication origin, but compared to many origins in the genome, it fires extremely inefficiently and late during S phase. One postulate to explain this observation is that ORC's role in origin firing is incompatible with its role in binding Sir1p and/or the formation of silent chromatin. Here we examined a mutant HMR-E silencer and fusions between robust replication origins and HMR-E for HMR a silencing, origin firing, and replication timing. Origin firing within HMR a and from the HMR-E silencer itself could be significantly enhanced, and the timing of HMR a replication during an otherwise normal S phase advanced, without a substantial reduction in SIR1-dependent silencing. However, although the robust origin/silencer fusions silenced HMR a quite well, they were measurably less effective than a comparable silencer containing HMR-E's native ORC binding site.


Sign in / Sign up

Export Citation Format

Share Document