The fission yeast origin recognition complex is constitutively associated with chromatin and is differentially modified through the cell cycle

1999 ◽  
Vol 112 (21) ◽  
pp. 3703-3712 ◽  
Author(s):  
Z. Lygerou ◽  
P. Nurse

The origin recognition complex (ORC) binds to the well defined origins of DNA replication in budding yeast. Homologous proteins in other eukaryotes have been identified but are less well characterised. We report here the characterisation of a fission yeast ORC complex (SpORC). Database searches identified a fission yeast Orc5 homologue. SpOrc5 is essential for cell viability and its deletion phenotype is identical to that of two previously identified ORC subunit homologues, SpOrc1 (Orp1/Cdc30) and SpOrc2 (Orp2). Co-immunoprecipitation experiments demonstrate that SpOrc1 forms a complex with SpOrc2 and SpOrc5 and gel filtration chromatography shows that SpOrc1 and SpOrc5 fractionate as high molecular mass complexes. SpORC subunits localise to the nucleus in a punctate distribution which persists throughout interphase and mitosis. We developed a chromatin isolation protocol and show that SpOrc1, 2 and 5 are associated with chromatin at all phases of the cell cycle. While the levels, nuclear localisation and chromatin association of SpORC remain constant through the cell cycle, one of its subunits, SpOrc2, is differentially modified. We show that SpOrc2 is a phosphoprotein which is hypermodified in mitosis and is rapidly converted to a faster migrating isoform as cells proceed into G(1) in preparation for S-phase.

2012 ◽  
Vol 287 (15) ◽  
pp. 11891-11898 ◽  
Author(s):  
Kyung Yong Lee ◽  
Sung Woong Bang ◽  
Sang Wook Yoon ◽  
Seung-Hoon Lee ◽  
Jong-Bok Yoon ◽  
...  

During the late M to the G1 phase of the cell cycle, the origin recognition complex (ORC) binds to the replication origin, leading to the assembly of the prereplicative complex for subsequent initiation of eukaryotic chromosome replication. We found that the cell cycle-dependent phosphorylation of human ORC2, one of the six subunits of ORC, dissociates ORC2, -3, -4, and -5 (ORC2–5) subunits from chromatin and replication origins. Phosphorylation at Thr-116 and Thr-226 of ORC2 occurs by cyclin-dependent kinase during the S phase and is maintained until the M phase. Phosphorylation of ORC2 at Thr-116 and Thr-226 dissociated the ORC2–5 from chromatin. Consistent with this, the phosphomimetic ORC2 protein exhibited defective binding to replication origins as well as to chromatin, whereas the phosphodefective protein persisted in binding throughout the cell cycle. These results suggest that the phosphorylation of ORC2 dissociates ORC from chromatin and replication origins and inhibits binding of ORC to newly replicated DNA.


2001 ◽  
Vol 21 (17) ◽  
pp. 5767-5777 ◽  
Author(s):  
Amit Vas ◽  
Winnie Mok ◽  
Janet Leatherwood

ABSTRACT Cdc2 kinase is a master regulator of cell cycle progression in the fission yeast Schizosaccharomyces pombe. Our data indicate that Cdc2 phosphorylates replication factor Orp2, a subunit of the origin recognition complex (ORC). Cdc2 phosphorylation of Orp2 appears to be one of multiple mechanisms by which Cdc2 prevents DNA rereplication in a single cell cycle. Cdc2 phosphorylation of Orp2 is not required for Cdc2 to activate DNA replication initiation. Phosphorylation of Orp2 appears first in S phase and becomes maximal in G2 and M when Cdc2 kinase activity is required to prevent reinitiation of DNA replication. A mutant lacking Cdc2 phosphorylation sites in Orp2 (orp2-T4A) allowed greater rereplication of DNA than congenic orp2 wild-type strains when the limiting replication initiation factor Cdc18 was deregulated. Thus, Cdc2 phosphorylation of Orp2 may be redundant with regulation of Cdc18 for preventing reinitiation of DNA synthesis. Since Cdc2 phosphorylation sites are present in Orp2 (also known as Orc2) from yeasts to metazoans, we propose that cell cycle-regulated phosphorylation of the ORC provides a safety net to prevent DNA rereplication and resulting genetic instability.


2002 ◽  
Vol 115 (7) ◽  
pp. 1435-1440 ◽  
Author(s):  
Mickael Rialland ◽  
Francesco Sola ◽  
Corrado Santocanale

Formation of pre-replicative complexes at origins is an early cell cycle event essential for DNA duplication. A large body of evidence supports the notion that Cdc6 protein, through its interaction with the origin recognition complex, is required for pre-replicative complex assembly by loading minichromosome maintenance proteins onto DNA. In fission yeast and Xenopus, this reaction known as the licensing of chromatin for DNA replication also requires the newly identified Cdt1 protein. We studied the role of hCdt1 protein in the duplication of the human genome by antibody microinjection experiments and analyzed its expression during the cell cycle in human non-transformed cells. We show that hCdt1 is essential for DNA replication in intact human cells, that it executes its function in a window of the cell cycle overlapping with pre-replicative complex formation and that it is necessary for the loading of minichromosome maintenance proteins onto chromatin. Intriguingly, we observed that hCdt1 protein, in contrast to other licensing factors, is already present in serum-deprived G0 arrested cells and its levels increase only marginally upon re-entry in the cell cycle.


1999 ◽  
Vol 380 (7-8) ◽  
pp. 729-733 ◽  
Author(s):  
P. Nurse

AbstractThe cyclin dependent kinases (CDKs), formed by complexes between Cdc2p and the B-cyclins Cig2p and Cdc13p, have a central role in regulating the fission yeast cell cycle and maintaining genomic stability. The CDK Cig2p/Cdc2p controls the onset of S-phase and the CDK Cdc13p/Cdc2p controls the onset of mitosis and ensures that there is only one S-phase in each cell. Cdc13p/Cdc2p can replace Cig2p/Cdc2p for the onset of S-phase, suggesting that the increasing activity of a single CDK during the cell cycle is sufficient to drive a cell in an orderly fashion into S-phase and into mitosis. If S-phase is incomplete, then inhibition of Cdc13p/Cdc2p prevents cells with unreplicated DNA from undergoing a catastrophic entry into mitosis. Control of CDK activity is also important to allow cells to exit the cell cycle and accumulate in G1 in response to nutritional deprivation and the presence of pheromone.


2006 ◽  
Vol 400 (3) ◽  
pp. 477-484 ◽  
Author(s):  
Nick Sirijovski ◽  
Ulf Olsson ◽  
Joakim Lundqvist ◽  
Salam Al-Karadaghi ◽  
Robert D. Willows ◽  
...  

Magnesium chelatase inserts Mg2+ into protoporphyrin IX and is the first unique enzyme of the chlorophyll biosynthetic pathway. It is a heterotrimeric enzyme, composed of I- (40 kDa), D- (70 kDa) and H- (140 kDa) subunits. The I- and D-proteins belong to the family of AAA+ (ATPases associated with various cellular activities), but only I-subunit hydrolyses ATP to ADP. The D-subunits provide a platform for the assembly of the I-subunits, which results in a two-tiered hexameric ring complex. However, the D-subunits are unstable in the chloroplast unless ATPase active I-subunits are present. The H-subunit binds protoporphyrin and is suggested to be the catalytic subunit. Previous studies have indicated that the H-subunit also has ATPase activity, which is in accordance with an earlier suggested two-stage mechanism of the reaction. In the present study, we demonstrate that gel filtration chromatography of affinity-purified Rhodobacter capsulatus H-subunit produced in Escherichia coli generates a high- and a low-molecular-mass fraction. Both fractions were dominated by the H-subunit, but the ATPase activity was only found in the high-molecular-mass fraction and magnesium chelatase activity was only associated with the low-molecular-mass fraction. We demonstrated that light converted monomeric low-molecular-mass H-subunit into high-molecular-mass aggregates. We conclude that ATP utilization by magnesium chelatase is solely connected to the I-subunit and suggest that a contaminating E. coli protein, which binds to aggregates of the H-subunit, caused the previously reported ATPase activity of the H-subunit.


2013 ◽  
Vol 31 (15_suppl) ◽  
pp. e15059-e15059
Author(s):  
Mark G. Frattini ◽  
Lucia Regales ◽  
Ruth Santos ◽  
Diana Carrillo

e15059 Background: Pancreatic cancer is the fourth leading cause of cancer death in the USA. In 2012, 43,920 people will be diagnosed and 37,390 people will die of this disease. 95% of tumors reveal loss of the p16 protein, a regulator of the G1 to S phase transition. Cdc7 is a conserved kinase required for the initiation of DNA replication, is a target of the S-phase checkpoint, and has a role in controlling the DNA damage response. Downregulation of Cdc7 kinase activity resulted in slowing of S-phase and cell cycle arrest followed by accumulation of DNA damage. Cdc7 has been shown to be over-expressed in many different tumors including the majority of solid and liquid tumors. In our laboratory a novel natural product small molecule inhibitor (MSK-777) has been identified, developed and shown to be efficacious in cell based cytotoxicity assays and multiple animal models of cancer. Methods: We have examined the efficacy of Cdc7 kinase inhibition as a therapeutic approach for pancreatic cancer by examining the sensitivity of MSK-777 in Capan-1, BxPC3, and PANC-1 cell lines. These cells were treated with MSK-777, control (DMSO), or hydroxyurea and collected for viable cell counts, fluorescence-activated cell sorting (FACS), and western blotting. Results: Cell viability analyses revealed that MSK-777 had a dramatic effect after 24 hours, reducing cell viability to less then 20% in BxPC3 cells. FACS results demonstrated that MSK-777 exposure resulted in cell cycle arrest at G1/S in Capan-1 and PANC-1 cells by 48 hours while BxPC3 cells showed a significant sub-G1 population by 24 hours, indicating apoptotic cell death. Western blotting showed that in BxPC3 cells phosphorylation of the mini-chromosome maintenance 2 protein (Mcm2) disappeared by 24 hours, indicating inactivation of the helicase that unwinds the strands of DNA during replication. Western blots of Capan-1 and PANC-1 cells showed lower levels of phosphorylated Mcm2 by 48 hours. Conclusions: We are currently examining the efficacy of MSK-777 in mouse models of orthotopically injected pancreatic cancer cells. Based on these collective results, inhibition of Cdc7 kinase activity with MSK-777 represents a novel and promising therapy for this deadly disease.


1999 ◽  
Vol 19 (8) ◽  
pp. 5535-5547 ◽  
Author(s):  
Tadayuki Takeda ◽  
Keiko Ogino ◽  
Etsuko Matsui ◽  
Min Kwan Cho ◽  
Hiroyuki Kumagai ◽  
...  

ABSTRACT Saccharomyces cerevisiae CDC7 encodes a serine/threonine kinase required for G1/S transition, and its related kinases are present in fission yeast as well as in higher eukaryotes, including humans. Kinase activity of Cdc7 protein depends on the regulatory subunit, Dbf4, which also interacts with replication origins. We have identified him1+ from two-hybrid screening with Hsk1, a fission yeast homologue of Cdc7 kinase, and showed that it encodes a regulatory subunit of Hsk1. Him1, identical to Dfp1, previously identified as an associated molecule of Hsk1, binds to Hsk1 and stimulates its kinase activity, which phosphorylates both catalytic and regulatory subunits as well as recombinant MCM2 protein in vitro. him1+ is essential for DNA replication in fission yeast cells, and its transcription is cell cycle regulated, increasing at middle M to late G1. The protein level is low at START in G1, increases at the G1/S boundary, and is maintained at a high level throughout S phase. Him1 protein is hyperphosphorylated at G1/S through S during the cell cycle as well as in response to early S-phase arrest induced by nucleotide deprivation. Deletion of one of the motifs conserved in regulatory subunits for Cdc7-related kinases as well as alanine substitution of three serine and threonine residues present in the same motif resulted in a defect in checkpoint regulation normally induced by hydroxyurea treatment. The alanine mutant also showed growth retardation after UV irradiation and the addition of methylmethane sulfonate. In keeping with this result, a database search indicates that him1+ is identical to rad35+ . Our results reveal a novel function of the Cdc7/Dbf4-related kinase complex in S-phase checkpoint control as well as in growth recovery from DNA damage in addition to its predicted essential function in S-phase initiation.


1999 ◽  
Vol 19 (10) ◽  
pp. 7228-7236 ◽  
Author(s):  
Yuya Ogawa ◽  
Tatsuro Takahashi ◽  
Hisao Masukata

ABSTRACT We have previously shown that replication of fission yeast chromosomes is initiated in distinct regions. Analyses of autonomous replicating sequences have suggested that regions required for replication are very different from those in budding yeast. Here, we present evidence that fission yeast replication origins are specifically associated with proteins that participate in initiation of replication. Most Orp1p, a putative subunit of the fission yeast origin recognition complex (ORC), was found to be associated with chromatin-enriched insoluble components throughout the cell cycle. In contrast, the minichromosome maintenance (Mcm) proteins, SpMcm2p and SpMcm6p, encoded by thenda1 +/cdc19+ andmis5+ genes, respectively, were associated with chromatin DNA only during the G1 and S phases. Immunostaining of spread nuclei showed SpMcm6p to be localized at discrete foci on chromatin during the G1 and S phases. A chromatin immunoprecipitation assay demonstrated that Orp1p was preferentially localized at the ars2004 andars3002 origins of the chromosome throughout the cell cycle, while SpMcm6p was associated with these origins only in the G1 and S phases. Both Orp1p and SpMcm6p were associated with a 1-kb region that contains elements required for autonomous replication of ars2004. The results suggest that the fission yeast ORC specifically interacts with chromosomal replication origins and that Mcm proteins are loaded onto the origins to play a role in initiation of replication.


2003 ◽  
Vol 23 (14) ◽  
pp. 5005-5017 ◽  
Author(s):  
Mohammad Mohammad ◽  
Randall D. York ◽  
Jonathan Hommel ◽  
Geoffrey M. Kapler

ABSTRACT The origin recognition complex (ORC) plays a central role in eukaryotic DNA replication. Here we describe a unique ORC-like complex in Tetrahymena thermophila, TIF4, which bound in an ATP-dependent manner to sequences required for cell cycle-controlled replication and gene amplification (ribosomal DNA [rDNA] type I elements). TIF4's mode of DNA recognition was distinct from that of other characterized ORCs, as it bound exclusively to single-stranded DNA. In contrast to yeast ORCs, TIF4 DNA binding activity was cell cycle regulated and peaked during S phase, coincident with the redistribution of the Orc2-related subunit, p69, from the cytoplasm to the macronucleus. Origin-binding activity and nuclear p69 immunoreactivity were further regulated during development, where they distinguished replicating from nonreplicating nuclei. Both activities were lost from germ line micronuclei following the programmed arrest of micronuclear replication. Replicating macronuclei stained with Orc2 antibodies throughout development in wild-type cells but failed to do so in the amplification-defective rmm11 mutant. Collectively, these findings indicate that the regulation of TIF4 is intimately tied to the cell cycle and developmentally programmed replication cycles. They further implicate TIF4 in rDNA gene amplification. As type I elements interact with other sequence-specific single-strand breaks (in vitro and in vivo), the dynamic interplay of Orc-like (TIF4) and non-ORC-like proteins with this replication determinant may provide a novel mechanism for regulation.


Sign in / Sign up

Export Citation Format

Share Document