scholarly journals Mycobacterium tuberculosis Maltosyltransferase GlgE, a Genetically Validated Antituberculosis Target, Is Negatively Regulated by Ser/Thr Phosphorylation

2013 ◽  
Vol 288 (23) ◽  
pp. 16546-16556 ◽  
Author(s):  
Jade Leiba ◽  
Karl Syson ◽  
Grégory Baronian ◽  
Isabelle Zanella-Cléon ◽  
Rainer Kalscheuer ◽  
...  

GlgE is a maltosyltransferase involved in the biosynthesis of α-glucans that has been genetically validated as a potential therapeutic target against Mycobacterium tuberculosis. Despite also making α-glucan, the GlgC/GlgA glycogen pathway is distinct and allosterically regulated. We have used a combination of genetics and biochemistry to establish how the GlgE pathway is regulated. M. tuberculosis GlgE was phosphorylated specifically by the Ser/Thr protein kinase PknB in vitro on one serine and six threonine residues. Furthermore, GlgE was phosphorylated in vivo when expressed in Mycobacterium bovis bacillus Calmette–Guérin (BCG) but not when all seven phosphorylation sites were replaced by Ala residues. The GlgE orthologues from Mycobacterium smegmatis and Streptomyces coelicolor were phosphorylated by the corresponding PknB orthologues in vitro, implying that the phosphorylation of GlgE is widespread among actinomycetes. PknB-dependent phosphorylation of GlgE led to a 2 orders of magnitude reduction in catalytic efficiency in vitro. The activities of phosphoablative and phosphomimetic GlgE derivatives, where each phosphorylation site was substituted with either Ala or Asp residues, respectively, correlated with negative phosphoregulation. Complementation studies of a M. smegmatis glgE mutant strain with these GlgE derivatives, together with both classical and chemical forward genetics, were consistent with flux through the GlgE pathway being correlated with GlgE activity. We conclude that the GlgE pathway appears to be negatively regulated in actinomycetes through the phosphorylation of GlgE by PknB, a mechanism distinct from that known in the classical glycogen pathway. Thus, these findings open new opportunities to target the GlgE pathway therapeutically.

2019 ◽  
Vol 47 (12) ◽  
pp. 6369-6385
Author(s):  
Jia-Yi Fan ◽  
Qian Huang ◽  
Quan-Quan Ji ◽  
En-Duo Wang

Abstract Transfer RNAs (tRNAs) are divided into two types, type I with a short variable loop and type II with a long variable loop. Aminoacylation of type I or type II tRNALeu is catalyzed by their cognate leucyl-tRNA synthetases (LeuRSs). However, in Streptomyces coelicolor, there are two types of tRNALeu and only one LeuRS (ScoLeuRS). We found that the enzyme could leucylate both types of ScotRNALeu, and had a higher catalytic efficiency for type II ScotRNALeu(UAA) than for type I ScotRNALeu(CAA). The results from tRNA and enzyme mutagenesis showed that ScoLeuRS did not interact with the canonical discriminator A73. The number of nucleotides, rather than the type of base of the variable loop in the two types of ScotRNALeus, was determined as important for aminoacylation. In vitro and in vivo assays showed that the tertiary structure formed by the D-loop and TψC-loop is more important for ScotRNALeu(UAA). We showed that the leucine-specific domain (LSD) of ScoLeuRS could help LeuRS, which originally only leucylates type II tRNALeu, to aminoacylate type I ScotRNALeu(CAA) and identified the crucial amino acid residues at the C-terminus of the LSD to recognize type I ScotRNALeu(CAA). Overall, our findings identified a rare recognition mechanism of LeuRS to tRNALeu.


Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2053
Author(s):  
Dalma Ménesi ◽  
Éva Klement ◽  
Györgyi Ferenc ◽  
Attila Fehér

Plant Rho-type GTPases (ROPs) are versatile molecular switches involved in a number of signal transduction pathways. Although it is well known that they are indirectly linked to protein kinases, our knowledge about their direct functional interaction with upstream or downstream protein kinases is scarce. It is reasonable to suppose that similarly to their animal counterparts, ROPs might also be regulated by phosphorylation. There is only, however, very limited experimental evidence to support this view. Here, we present the analysis of two potential phosphorylation sites of AtROP1 and two types of potential ROP-kinases. The S74 site of AtROP1 has been previously shown to potentially regulate AtROP1 activation dependent on its phosphorylation state. However, the kinase phosphorylating this evolutionarily conserved site could not be identified: we show here that despite of the appropriate phosphorylation site consensus sequences around S74 neither the selected AGC nor CPK kinases phosphorylate S74 of AtROP1 in vitro. However, we identified several phosphorylation sites other than S74 for the CPK17 and 34 kinases in AtROP1. One of these sites, S97, was tested for biological relevance. Although the mutation of S97 to alanine (which cannot be phosphorylated) or glutamic acid (which mimics phosphorylation) somewhat altered the protein interaction strength of AtROP1 in yeast cells, the mutant proteins did not modify pollen tube growth in an in vivo test.


2008 ◽  
Vol 191 (5) ◽  
pp. 1618-1630 ◽  
Author(s):  
Shaleen B. Korch ◽  
Heidi Contreras ◽  
Josephine E. Clark-Curtiss

ABSTRACT Mycobacterium tuberculosis protein pairs Rv1246c-Rv1247c, Rv2865-Rv2866, and Rv3357-Rv3358, here named RelBE, RelFG, and RelJK, respectively, were identified based on homology to the Escherichia coli RelBE toxin:antitoxin (TA) module. In this study, we have characterized each Rel protein pair and have established that they are functional TA modules. Overexpression of individual M. tuberculosis rel toxin genes relE, relG, and relK induced growth arrest in Mycobacterium smegmatis; a phenotype that was completely reversible by expression of their cognate antitoxin genes, relB, relF, and relJ, respectively. We also provide evidence that RelB and RelE interact directly, both in vitro and in vivo. Analysis of the genetic organization and regulation established that relBE, relFG, and relJK form bicistronic operons that are cotranscribed and autoregulated, in a manner unlike typical TA modules. RelB and RelF act as transcriptional activators, inducing expression of their respective promoters. However, RelBE, RelFG, and RelJK (together) repress expression to basal levels of activity, while RelJ represses promoter activity altogether. Finally, we have determined that all six rel genes are expressed in broth-grown M. tuberculosis, whereas relE, relF, and relK are expressed during infection of human macrophages. This is the first demonstration of M. tuberculosis expressing TA modules in broth culture and during infection of human macrophages.


2003 ◽  
Vol 23 (10) ◽  
pp. 3405-3416 ◽  
Author(s):  
Julia M. Sidorova ◽  
Linda L. Breeden

ABSTRACT Rad53 of Saccharomyces cerevisiae is a checkpoint kinase whose structure and function are conserved among eukaryotes. When a cell detects damaged DNA, Rad53 activity is dramatically increased, which ultimately leads to changes in DNA replication, repair, and cell division. Despite its central role in checkpoint signaling, little is known about Rad53 substrates or substrate specificity. A number of proteins are implicated as Rad53 substrates; however, the evidence remains indirect. Previously, we have provided evidence that Swi6, a subunit of the Swi4/Swi6 late-G1-specific transcriptional activator, is a substrate of Rad53 in the G1/S DNA damage checkpoint. In the present study we identify Rad53 phosphorylation sites in Swi6 in vitro and demonstrate that at least one of them is targeted by Rad53 in vivo. Mutations in these phosphorylation sites in Swi6 shorten but do not eliminate the Rad53-dependent delay of the G1-to-S transition after DNA damage. We derive a consensus for Rad53 site preference at positions −2 and +2 (−2/+2) and identify its potential substrates in the yeast proteome. Finally, we present evidence that one of these candidates, the cohesin complex subunit Scc1 undergoes DNA damage-dependent phosphorylation, which is in part dependent on Rad53.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Masayasu Okada ◽  
Yosuke Kawagoe ◽  
Yuta Sato ◽  
Motohiro Nozumi ◽  
Yuya Ishikawa ◽  
...  

AbstractGAP-43 is a vertebrate neuron-specific protein and that is strongly related to axon growth and regeneration; thus, this protein has been utilized as a classical molecular marker of these events and growth cones. Although GAP-43 was biochemically characterized more than a quarter century ago, how this protein is related to these events is still not clear. Recently, we identified many phosphorylation sites in the growth cone membrane proteins of rodent brains. Two phosphorylation sites of GAP-43, S96 and T172, were found within the top 10 hit sites among all proteins. S96 has already been characterized (Kawasaki et al., 2018), and here, phosphorylation of T172 was characterized. In vitro (cultured neurons) and in vivo, an antibody specific to phosphorylated T172 (pT172 antibody) specifically recognized cultured growth cones and growing axons in developing mouse neurons, respectively. Immunoblotting showed that pT172 antigens were more rapidly downregulated throughout development than those of pS96 antibody. From the primary structure, this phosphorylation site was predicted to be conserved in a wide range of animals including primates. In the developing marmoset brainstem and in differentiated neurons derived from human induced pluripotent stem cells, immunoreactivity with pT172 antibody revealed patterns similar to those in mice. pT172 antibody also labeled regenerating axons following sciatic nerve injury. Taken together, the T172 residue is widely conserved in a wide range of mammals including primates, and pT172 is a new candidate molecular marker for growing axons.


Microbiology ◽  
2011 ◽  
Vol 157 (1) ◽  
pp. 290-299 ◽  
Author(s):  
Veeraraghavan Usha ◽  
Sudagar S. Gurcha ◽  
Andrew L. Lovering ◽  
Adrian J. Lloyd ◽  
Athina Papaemmanouil ◽  
...  

In contrast with most bacteria, which harbour a single inosine monophosphate dehydrogenase (IMPDH) gene, the genomic sequence of Mycobacterium tuberculosis H37Rv predicts three genes encoding IMPDH: guaB1, guaB2 and guaB3. These three genes were cloned and expressed in Escherichia coli to evaluate functional IMPDH activity. Purified recombinant Mt-GuaB2, which uses inosine monophosphate as a substrate, was identified as the only active GuaB orthologue in M. tuberculosis and showed optimal activity at pH 8.5 and 37 °C. Mt-GuaB2 was inhibited significantly in vitro by a panel of diphenyl urea-based derivatives, which were also potent anti-mycobacterial agents against M. tuberculosis and Mycobacterium smegmatis, with MICs in the range of 0.2–0.5 μg ml−1. When Mt-GuaB2 was overexpressed on a plasmid in trans in M. smegmatis, a diphenyl urea analogue showed a 16-fold increase in MIC. Interestingly, when Mt-GuaB orthologues (Mt-GuaB1 and 3) were also overexpressed on a plasmid in trans in M. smegmatis, they also conferred resistance, suggesting that although these Mt-GuaB orthologues were inactive in vitro, they presumably titrate the effect of the inhibitory properties of the active compounds in vivo.


2004 ◽  
Vol 186 (13) ◽  
pp. 4051-4055 ◽  
Author(s):  
Oren Zimhony ◽  
Catherine Vilchèze ◽  
William R. Jacobs

ABSTRACT Unlike most other bacteria, mycobacteria make fatty acids with the multidomain enzyme eukaryote-like fatty acid synthase I (FASI). Previous studies have demonstrated that the tuberculosis drug pyrazinamide and 5-chloro-pyrazinamide target FASI activity. Biochemical studies have revealed that in addition to C16:0, Mycobacterium tuberculosis FASI synthesizes C26:0 fatty acid, while the Mycobacterium smegmatis enzyme makes C24:0 fatty acid. In order to express M. tuberculosis FASI in a rapidly growing Mycobacterium and to characterize the M. tuberculosis FASI in vivo, we constructed an M. smegmatis Δfas1 strain which contained the M. tuberculosis fas1 homologue. The M. smegmatis Δfas1 (attB::M. tuberculosis fas1) strain grew more slowly than the parental M. smegmatis strain and was more susceptible to 5-chloro-pyrazinamide. Surprisingly, while the M. smegmatis Δfas1 (attB::M. tuberculosis fas1) strain produced C26:0, it predominantly produced C24:0. These results suggest that the fatty acid elongation that produces C24:0 or C26:0 in vivo is due to a complex interaction among FASI, FabH, and FASII and possibly other systems and is not solely due to FASI elongation, as previously suggested by in vitro studies.


1996 ◽  
Vol 109 (4) ◽  
pp. 817-826 ◽  
Author(s):  
Y.H. Chou ◽  
P. Opal ◽  
R.A. Quinlan ◽  
R.D. Goldman

Previously we identified p34cdc2 as one of two protein kinases mediating the hyperphosphorylation and disassembly of vimentin in mitotic BHK-21 cells. In this paper, we identify the second kinase as a 37 kDa protein. This p37 protein kinase phosphorylates vimentin on two adjacent residues (thr-457 and ser-458) which are located in the C-terminal non-alpha-helical domain. Contrary to the p34cdc2 mediated N-terminal phosphorylation (at ser-55) which can disassemble vimentin intermediate filaments (IF) in vitro, p37 protein kinase phosphorylates vimentin-IF without obviously affecting its structure in vitro. We have further examined the in vivo role(s) of vimentin phosphorylation in the disassembly of the IF network in mitotic BHK cells by transient transfection assays. In untransfected BHK cells, the interphase vimentin IF networks are disassembled into non-filamentous aggregates when cells enter mitosis. Transfection of cells with vimentin cDNA lacking the p34cdc2 phosphorylation site (ser55:ala) effectively prevents mitotic cells from disassembling their IF. In contrast, apparently normal disassembly takes place in cells transfected with cDNA containing mutated p37 kinase phosphorylation sites (thr457:ala/ser458:ala). Transfection of cells with vimentin cDNAs lacking both the N- and C-terminal phosphorylation sites yields a phenotype indistinguishable from that obtained with the single N-terminal mutant. Taken together, our results demonstrate that the site-specific phosphorylation of the N-terminal domain, but not the C-terminal domain of vimentin plays an important role in determining the state of IF polymerization and supramolecular organization in mitotic cells.


2004 ◽  
Vol 381 (2) ◽  
pp. 471-481 ◽  
Author(s):  
Mark E. GRAHAM ◽  
Patricia RUMA-HAYNES ◽  
Amanda G. CAPES-DAVIS ◽  
Joanne M. DUNN ◽  
Timothy C. TAN ◽  
...  

Doublecortin (DCX) is a 40 kDa microtubule-associated protein required for normal neural migration and cortical layering during development. Mutations in the human DCX gene cause a disruption of cortical neuronal migration. Defects in cdk5 (cyclin-dependent kinase 5) also cause defects in neural migration and cortical layering. DCX is a substrate for cdk5 in vitro and in vivo and the major site of in vitro phosphorylation is Ser-297. We used a highly developed MS strategy to identify the cdk5 phosphorylation sites and determine the major and minor sites. Several phosphopeptides were identified from a tryptic digest of 32P-labelled, cdk5-phosphorylated DCX using a combination of off-line HPLC and matrix-assisted laser-desorption ionization-MS with alkaline phosphatase treatment. Tandem MS/MS enabled the identification of seven phosphorylation sites for cdk5. Monitoring of 32P label indicated that there was one major site, Ser-28, at the N-terminus, and a major site, Ser-339, in the serine/proline-rich domain at the C-terminus. Five other sites, Ser-287, Thr-289, Ser-297, Thr-326 and Ser-332, were also found in the tail. Site-directed mutagenesis largely supported these findings. Single mutation of Ser-28 reduced but did not abolish phosphorylation. Double, rather than single, mutation for Ser-332 and Ser-339 was required to reduce overall phosphorylation, suggesting an interaction between these sites. Truncations of the tail produced a significant reduction in cdk5 phosphorylation of DCX. These results do not support Ser-297 as the major cdk5 phosphorylation site in DCX, but indicate that DCX is subject to complex multisite phosphorylation. This illustrates the importance of a well-developed MS strategy to identify phosphorylation sites.


Microbiology ◽  
2010 ◽  
Vol 156 (3) ◽  
pp. 873-883 ◽  
Author(s):  
Abhinav Dey ◽  
Amit Kumar Verma ◽  
Dipankar Chatterji

Rifampicin and its derivatives are at the forefront of the current standard chemotherapeutic regimen for active tuberculosis; they act by inhibiting the transcription activity of prokaryotic RNA polymerase. Rifampicin is believed to interact with the β subunit of RNA polymerase. However, it has been observed that protein–protein interactions with RNA polymerase core enzyme lead to its reduced susceptibility to rifampicin. This mechanism became more diversified with the discovery of RbpA, a novel RNA polymerase-binding protein, in Streptomyces coelicolor that could mitigate the effect of rifampicin on RNA polymerase activity. MsRbpA is a homologue of RbpA in Mycobacterium smegmatis. On deciphering the role of MsRbpA in M. smegmatis we found that it interacts with RNA polymerase and increases the rifampicin tolerance levels, both in vitro and in vivo. It interacts with the β subunit of RNA polymerase. However, it was found to be incapable of rescuing rifampicin-resistant RNA polymerases in the presence of rifampicin at the respective IC50.


Sign in / Sign up

Export Citation Format

Share Document