scholarly journals A Critical Role for the Neural Zinc Factor ST18 in Pancreatic β-Cell Apoptosis

2014 ◽  
Vol 289 (12) ◽  
pp. 8413-8419 ◽  
Author(s):  
Cyndi Henry ◽  
Anne-Françoise Close ◽  
Jean Buteau
Author(s):  
Xiaobo Hu ◽  
Cong Hu ◽  
Jun Liu ◽  
Zhuan Wu ◽  
Tingting Duan ◽  
...  

Abstract Endoplasmic reticulum (ER) stress plays a critical role in pancreatic β cell destruction which leads to the pathogenesis of type 1 diabetes mellitus (T1DM). Vitamin D (VD) has been reported to reduce the risk of T1DM; however, it remains unknown whether VD affects ER stress in pancreatic β cells. In this study, we investigated the role of the active form of VD, 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3), in ER stress-induced β cell apoptosis and explored its potential mechanism in mouse insulinoma cell line mouse insulinoma 6 (MIN6). The results of cell counting kit-8 (CCK8) and flow cytometric analyses showed that 1,25-(OH)2D3 caused a significant increase in the viability of MIN6 cells injured by H2O2. The protein kinase like ER kinase (PERK) signal pathway, one of the most conserved branches of ER stress, was found to be involved in this process. H2O2 activated the phosphorylation of PERK, upregulated the activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP) expression, and subsequently initiated cell apoptosis, which were significantly reversed by 1,25-(OH)2D3 pretreatment. In addition, GSK2606414, a specific inhibitor of PERK, suppressed PERK phosphorylation and reduced the expressions of ATF4 and CHOP, leading to a significant decrease in β cell apoptosis induced by H2O2. Taken together, the present findings firstly demonstrated that 1,25-(OH)2D3 could prevent MIN6 cells against ER stress-associated apoptosis by inhibiting the PERK-ATF4-CHOP pathway. Therefore, our results suggested that 1,25-(OH)2D3 might serve as a potential therapeutic target for preventing pancreatic β cell destruction in T1DM.


Cell Research ◽  
2007 ◽  
Vol 17 (11) ◽  
pp. 966-968 ◽  
Author(s):  
Ruo Lan Xiang ◽  
Yan Li Yang ◽  
Jin Zuo ◽  
Xin Hua Xiao ◽  
Yong Sheng Chang ◽  
...  

Author(s):  
Kanchana Suksri ◽  
Namoiy Semprasert ◽  
Mutita Junking ◽  
Suchanoot Kutpruek ◽  
Thawornchai Limjindaporn ◽  
...  

Long-term medication with dexamethasone (a synthetic glucocorticoid (GC) drug) results in hyperglycemia, or steroid-induced diabetes. Although recent studies revealed dexamethasone directly induces pancreatic β-cell apoptosis, its molecular mechanisms remain unclear. In our initial analysis of mRNA transcripts, we discovered the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) pathway may be involved in dexamethasone-induced pancreatic β-cell apoptosis. In the present study, a mechanism of dexamethasone-induced pancreatic β-cell apoptosis through the TRAIL pathway was investigated in cultured cells and isolated mouse islets. INS-1 cells were cultured with and without dexamethasone in the presence or absence of a glucocorticoid receptor (GR) inhibitor, RU486. We found that dexamethasone induced pancreatic β-cell apoptosis in association with the upregulation of TRAIL mRNA and protein expression. Moreover, dexamethasone upregulated the TRAIL death receptor (DR5) protein but suppressed the decoy receptor (DcR1) protein. Similar findings were observed in mouse isolated islets: dexamethasone increased TRAIL and DR5 compared to that of control mice. Furthermore, dexamethasone stimulated pro-apoptotic signaling including superoxide production, caspase-8, -9, and -3 activities, NF-B, and Bax, but repressed the anti-apoptotic protein, Bcl-2. All these effects were inhibited by the GR-inhibitor, RU486. Furthermore, knock down DR5 decreased dexamethasone-induced caspase 3 activity. Caspase-8 and caspase-9 inhibitors protected pancreatic β-cells from dexamethasone-induced apoptosis. Taken together, dexamethasone induced pancreatic β-cell apoptosis by binding to the GR and inducing DR5 and TRAIL pathway.


2018 ◽  
Vol 51 (6) ◽  
pp. 2955-2971 ◽  
Author(s):  
Shuling Song ◽  
Jin Tan ◽  
Yuyang Miao ◽  
Zuoming Sun ◽  
Qiang  Zhang

Background/Aims: Intermittent hypoxia (IH) causes apoptosis in pancreatic β-cells, but the potential mechanisms remain unclear. Endoplasmic reticulum (ER) stress, autophagy, and apoptosis are interlocked in an extensive crosstalk. Thus, this study aimed to investigate the contributions of ER stress and autophagy to IH-induced pancreatic β-cell apoptosis. Methods: We established animal and cell models of IH, and then inhibited autophagy and ER stress by pharmacology and small interfering RNA (siRNA) in INS-1 cells and rats. The levels of biomarkers for autophagy, ER stress, and apoptosis were evaluated by immunoblotting and immunofluorescence. The number of autophagic vacuoles was observed by transmission electron microscopy. Results: IH induced autophagy activation both in vivo and in vitro, as evidenced by increased autophagic vacuole formation and LC3 turnover, and decreased SQSTM1 level. The levels of ER-stress-related proteins, including GRP78, CHOP, caspase 12, phosphorylated (p)-protein kinase RNA-like ER kinase (PERK), p-eIF2α, and activating transcription factor 4 (ATF4) were increased under IH conditions. Inhibition of ER stress with tauroursodeoxycholic acid or 4-phenylbutyrate partially blocked IH-induced autophagy in INS-1 cells. Furthermore, inhibition of PERK with GSK2606414 or siRNA blocked the ERstress-related PERK/eIF2α/ATF4 signaling pathway and inhibited autophagy induced by IH, which indicates that IH-induced autophagy activation is dependent on this signaling pathway. Promoting autophagy with rapamycin alleviated IH-induced apoptosis, whereas inhibition of autophagy with chloroquine or autophagy-related gene (Atg5 and Atg7) siRNA aggravated pancreatic β-cell apoptosis caused by IH. Conclusion: IH induces autophagy activation through the ER-stress-related PERK/eIF2α/ATF4 signaling pathway, which is a protective response to pancreatic β-cell apoptosis caused by IH.


2008 ◽  
Vol 294 (3) ◽  
pp. E540-E550 ◽  
Author(s):  
Elida Lai ◽  
George Bikopoulos ◽  
Michael B. Wheeler ◽  
Maria Rozakis-Adcock ◽  
Allen Volchuk

Chronic exposure to elevated saturated free fatty acid (FFA) levels has been shown to induce endoplasmic reticulum (ER) stress that may contribute to promoting pancreatic β-cell apoptosis. Here, we compared the effects of FFAs on apoptosis and ER stress in human islets and two pancreatic β-cell lines, rat INS-1 and mouse MIN6 cells. Isolated human islets cultured in vitro underwent apoptosis, and markers of ER stress pathways were elevated by chronic palmitate exposure. Palmitate also induced apoptosis in MIN6 and INS-1 cells, although the former were more resistant to both apoptosis and ER stress. MIN6 cells were found to express significantly higher levels of ER chaperone proteins than INS-1 cells, which likely accounts for the ER stress resistance. We attempted to determine the relative contribution that ER stress plays in palmitate-induced β-cell apoptosis. Although overexpressing GRP78 in INS-1 cells partially reduced susceptibility to thapsigargin, this failed to reduce palmitate-induced ER stress or apoptosis. In INS-1 cells, palmitate induced apoptosis at concentrations that did not result in significant ER stress. Finally, MIN6 cells depleted of GRP78 were more susceptible to tunicamycin-induced apoptosis but not to palmitate-induced apoptosis compared with control cells. These results suggest that ER stress is likely not the main mechanism involved in palmitate-induced apoptosis in β-cell lines. Human islets and MIN6 cells were found to express high levels of stearoyl-CoA desaturase-1 compared with INS-1 cells, which may account for the decreased susceptibility of these cells to the cytotoxic effects of palmitate.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Idil I. Aigha ◽  
Essam M. Abdelalim

Abstract Understanding the biology underlying the mechanisms and pathways regulating pancreatic β cell development is necessary to understand the pathology of diabetes mellitus (DM), which is characterized by the progressive reduction in insulin-producing β cell mass. Pluripotent stem cells (PSCs) can potentially offer an unlimited supply of functional β cells for cellular therapy and disease modeling of DM. Homeobox protein NKX6.1 is a transcription factor (TF) that plays a critical role in pancreatic β cell function and proliferation. In human pancreatic islet, NKX6.1 expression is exclusive to β cells and is undetectable in other islet cells. Several reports showed that activation of NKX6.1 in PSC-derived pancreatic progenitors (MPCs), expressing PDX1 (PDX1+/NKX6.1+), warrants their future commitment to monohormonal β cells. However, further differentiation of MPCs lacking NKX6.1 expression (PDX1+/NKX6.1−) results in an undesirable generation of non-functional polyhormonal β cells. The importance of NKX6.1 as a crucial regulator in MPC specification into functional β cells directs attentions to further investigating its mechanism and enhancing NKX6.1 expression as a means to increase β cell function and mass. Here, we shed light on the role of NKX6.1 during pancreatic β cell development and in directing the MPCs to functional monohormonal lineage. Furthermore, we address the transcriptional mechanisms and targets of NKX6.1 as well as its association with diabetes.


2014 ◽  
Vol 4 (9) ◽  
pp. e131-e131 ◽  
Author(s):  
Y Fang ◽  
Q Zhang ◽  
J Tan ◽  
L Li ◽  
X An ◽  
...  

Life Sciences ◽  
2016 ◽  
Vol 144 ◽  
pp. 1-7 ◽  
Author(s):  
Bin Guo ◽  
Wenjian Zhang ◽  
Shiqing Xu ◽  
Jinning Lou ◽  
Shuxia Wang ◽  
...  

iScience ◽  
2018 ◽  
Vol 1 ◽  
pp. 72-86 ◽  
Author(s):  
Kanaka Durga Devi Gorrepati ◽  
Blaz Lupse ◽  
Karthika Annamalai ◽  
Ting Yuan ◽  
Kathrin Maedler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document