scholarly journals Inhibition of Neisseria gonorrhoeae Type II Topoisomerases by the Novel Spiropyrimidinetrione AZD0914

2015 ◽  
Vol 290 (34) ◽  
pp. 20984-20994 ◽  
Author(s):  
Gunther Kern ◽  
Tiffany Palmer ◽  
David E. Ehmann ◽  
Adam B. Shapiro ◽  
Beth Andrews ◽  
...  

We characterized the inhibition of Neisseria gonorrhoeae type II topoisomerases gyrase and topoisomerase IV by AZD0914 (AZD0914 will be henceforth known as ETX0914 (Entasis Therapeutics)), a novel spiropyrimidinetrione antibacterial compound that is currently in clinical trials for treatment of drug-resistant gonorrhea. AZD0914 has potent bactericidal activity against N. gonorrhoeae, including multidrug-resistant strains and key Gram-positive, fastidious Gram-negative, atypical, and anaerobic bacterial species (Huband, M. D., Bradford, P. A., Otterson, L. G., Basrab, G. S., Giacobe, R. A., Patey, S. A., Kutschke, A. C., Johnstone, M. R., Potter, M. E., Miller, P. F., and Mueller, J. P. (2014) In Vitro Antibacterial Activity of AZD0914: A New Spiropyrimidinetrione DNA Gyrase/Topoisomerase Inhibitor with Potent Activity against Gram-positive, Fastidious Gram-negative, and Atypical Bacteria. Antimicrob. Agents Chemother. 59, 467–474). AZD0914 inhibited DNA biosynthesis preferentially to other macromolecules in Escherichia coli and induced the SOS response to DNA damage in E. coli. AZD0914 stabilized the enzyme-DNA cleaved complex for N. gonorrhoeae gyrase and topoisomerase IV. The potency of AZD0914 for inhibition of supercoiling and the stabilization of cleaved complex by N. gonorrhoeae gyrase increased in a fluoroquinolone-resistant mutant enzyme. When a mutation, conferring mild resistance to AZD0914, was present in the fluoroquinolone-resistant mutant, the potency of ciprofloxacin for inhibition of supercoiling and stabilization of cleaved complex was increased greater than 20-fold. In contrast to ciprofloxacin, religation of the cleaved DNA did not occur in the presence of AZD0914 upon removal of magnesium from the DNA-gyrase-inhibitor complex. AZD0914 had relatively low potency for inhibition of human type II topoisomerases α and β.

2015 ◽  
Vol 59 (10) ◽  
pp. 6053-6063 ◽  
Author(s):  
Douglas J. Biedenbach ◽  
Michael D. Huband ◽  
Meredith Hackel ◽  
Boudewijn L. M. de Jonge ◽  
Daniel F. Sahm ◽  
...  

ABSTRACTAZD0914, a new spiropyrimidinetrione bacterial DNA gyrase inhibitor with a novel mode of inhibition, has activity against bacterial species commonly cultured from patient infection specimens, including fluoroquinolone-resistant isolates. This study assessed thein vitroactivity of AZD0914 against key Gram-positive and fastidious Gram-negative clinical isolates collected globally in 2013. AZD0914 demonstrated potent activity, with MIC90s for AZD0914 of 0.25 mg/liter againstStaphylococcus aureus(n= 11,680), coagulase-negative staphylococci (n= 1,923), streptococci (n= 4,380), andMoraxella catarrhalis(n= 145), 0.5 mg/liter againstStaphylococcus lugdunensis(n= 120) andHaemophilus influenzae(n= 352), 1 mg/liter againstEnterococcus faecalis(n= 1,241), and 2 mg/liter againstHaemophilus parainfluenzae(n= 70). The activity againstEnterococcus faeciumwas more limited (MIC90, 8 mg/liter). The spectrum and potency of AZD0914 included fluoroquinolone-resistant isolates in each species group, including methicillin-resistant staphylococci, penicillin-resistant streptococci, vancomycin-resistant enterococci, β-lactamase-producingHaemophilusspp., andM. catarrhalis. Based on thesein vitrofindings, AZD0914 warrants further investigation for its utility against a variety of Gram-positive and fastidious Gram-negative bacterial species.


2014 ◽  
Vol 59 (1) ◽  
pp. 467-474 ◽  
Author(s):  
Michael D. Huband ◽  
Patricia A. Bradford ◽  
Linda G. Otterson ◽  
Gregory S. Basarab ◽  
Amy C. Kutschke ◽  
...  

ABSTRACTAZD0914 is a new spiropyrimidinetrione bacterial DNA gyrase/topoisomerase inhibitor with potentin vitroantibacterial activity against key Gram-positive (Staphylococcus aureus,Staphylococcus epidermidis,Streptococcus pneumoniae,Streptococcus pyogenes, andStreptococcus agalactiae), fastidious Gram-negative (Haemophilus influenzaeandNeisseria gonorrhoeae), atypical (Legionella pneumophila), and anaerobic (Clostridium difficile) bacterial species, including isolates with known resistance to fluoroquinolones. AZD0914 works via inhibition of DNA biosynthesis and accumulation of double-strand cleavages; this mechanism of inhibition differs from those of other marketed antibacterial compounds. AZD0914 stabilizes and arrests the cleaved covalent complex of gyrase with double-strand broken DNA under permissive conditions and thus blocks religation of the double-strand cleaved DNA to form fused circular DNA. Whereas this mechanism is similar to that seen with fluoroquinolones, it is mechanistically distinct. AZD0914 exhibited low frequencies of spontaneous resistance inS. aureus, and if mutants were obtained, the mutations mapped togyrB. Additionally, no cross-resistance was observed for AZD0914 against recent bacterial clinical isolates demonstrating resistance to fluoroquinolones or other drug classes, including macrolides, β-lactams, glycopeptides, and oxazolidinones. AZD0914 was bactericidal in both minimum bactericidal concentration andin vitrotime-kill studies. Inin vitrocheckerboard/synergy testing with 17 comparator antibacterials, only additivity/indifference was observed. The potentin vitroantibacterial activity (including activity against fluoroquinolone-resistant isolates), low frequency of resistance, lack of cross-resistance, and bactericidal activity of AZD0914 support its continued development.


2021 ◽  
Vol 65 (5) ◽  
Author(s):  
Dmitrii I. Shiriaev ◽  
Alina A. Sofronova ◽  
Ekaterina A. Berdnikovich ◽  
Dmitrii A. Lukianov ◽  
Ekaterina S. Komarova ◽  
...  

ABSTRACT Bacterial type II topoisomerases, DNA gyrase and topoisomerase IV, are targets of many antibiotics, including fluoroquinolones (FQs). Unfortunately, a number of bacterial species easily acquire resistance to FQs by mutations in either DNA gyrase or topoisomerase IV genes. The emergence of resistant pathogenic strains is a global problem in health care; therefore, identifying alternative pathways to thwart their persistence is the current frontier in drug discovery. Nybomycins are an attractive class of compounds, reported to be “reverse antibiotics” that selectively inhibit growth of some Gram-positive FQ-resistant bacteria by targeting the mutant form of DNA gyrase while being inactive against wild-type strains with FQ-sensitive gyrases. The strong “reverse” effect was demonstrated only for a few Gram-positive organisms resistant to FQs due to the S83L/I mutation in the GyrA subunit of DNA gyrase. However, the activity of nybomycins has not been extensively explored among Gram-negative species. Here, we observed that in a ΔtolC strain of the Gram-negative Escherichia coli with enhanced permeability, wild-type gyrase and a GyrA S83L mutant, resistant to fluoroquinolones, are similarly sensitive to nybomycin.


2021 ◽  
Vol 14 (5) ◽  
pp. 399
Author(s):  
Lamya H. Al-Wahaibi ◽  
Amer A. Amer ◽  
Adel A. Marzouk ◽  
Hesham A.M. Gomaa ◽  
Bahaa G. M. Youssif ◽  
...  

A novel series of ciprofloxacin hybrids comprising various heterocycle derivatives has been synthesized and structurally elucidated using 1H NMR, 13C NMR, and elementary analyses. Using ciprofloxacin as a reference, compounds 1–21 were screened in vitro against Gram-positive bacterial strains such as Staphylococcus aureus and Bacillus subtilis and Gram-negative strains such as Escherichia coli and Pseudomonas aeruginosa. As a result, many of the compounds examined had antibacterial activity equivalent to ciprofloxacin against test bacteria. Compounds 2–6, oxadiazole derivatives, were found to have antibacterial activity that was 88 to 120% that of ciprofloxacin against Gram-positive and Gram-negative bacteria. The findings showed that none of the compounds tested had antifungal activity against Aspergillus flavus, but did have poor activity against Candida albicans, ranging from 23% to 33% of fluconazole, with compound 3 being the most active (33% of fluconazole). The most potent compounds, 3, 4, 5, and 6, displayed an IC50 of 86, 42, 92, and 180 nM against E. coli DNA gyrase, respectively (novobiocin, IC50 = 170 nM). Compounds 4, 5, and 6 showed IC50 values (1.47, 6.80, and 8.92 µM, respectively) against E. coli topo IV in comparison to novobiocin (IC50 = 11 µM).


2014 ◽  
Vol 59 (3) ◽  
pp. 1478-1486 ◽  
Author(s):  
Richard A. Alm ◽  
Sushmita D. Lahiri ◽  
Amy Kutschke ◽  
Linda G. Otterson ◽  
Robert E. McLaughlin ◽  
...  

ABSTRACTThe unmet medical need for novel intervention strategies to treatNeisseria gonorrhoeaeinfections is significant and increasing, as rapidly emerging resistance in this pathogen is threatening to eliminate the currently available treatment options. AZD0914 is a novel bacterial gyrase inhibitor that possesses potentin vitroactivities against isolates with high-level resistance to ciprofloxacin and extended-spectrum cephalosporins, and it is currently in clinical development for the treatment ofN. gonorrhoeaeinfections. The propensity to develop resistance against AZD0914 was examined inN. gonorrhoeaeand found to be extremely low, a finding supported by similar studies withStaphylococcus aureus. The genetic characterization of both first-step and second-step mutants that exhibited decreased susceptibilities to AZD0914 identified substitutions in the conserved GyrB TOPRIM domain, confirming DNA gyrase as the primary target of AZD0914 and providing differentiation from fluoroquinolones. The analysis of available bacterial gyrase and topoisomerase IV structures, including those bound to fluoroquinolone and nonfluoroquinolone inhibitors, has allowed the rationalization of the lack of cross-resistance that AZD0914 shares with fluoroquinolones. Microbiological susceptibility data also indicate that the topoisomerase inhibition mechanisms are subtly different betweenN. gonorrhoeaeand other bacterial species. Taken together, these data support the progression of AZD0914 as a novel treatment option for the oral treatment ofN. gonorrhoeaeinfections.


Author(s):  
Aiko Masuko ◽  
Iichiro Takata ◽  
Kiyoko Fujita ◽  
Hirotoshi Okumura ◽  
Fumihito Ushiyama ◽  
...  

Gonorrhea is a common, sexually transmitted disease caused by Neisseria gonorrhoeae. Multidrug-resistant N. gonorrhoeae is an urgent threat, and the development of a new antimicrobial agent that functions via a new mechanism is strongly desired. We evaluated the in vitro and in vivo activities of a DNA gyrase/topoisomerase IV inhibitor, TP0480066, which is a novel 8-(methylamino)-2-oxo-1,2-dihydroquinoline derivative. The MICs of TP0480066 were substantially lower than those of other currently or previously used antimicrobials against gonococcal strains demonstrating resistance to fluoroquinolones, macrolides, β-lactams and aminoglycosides (MICs, ≤0.0005 μg/mL). Additionally, no cross-resistance was observed between TP0480066 and ciprofloxacin. The frequencies of spontaneous resistance to TP0480066 for N. gonorrhoeae ATCC 49226 were below the detection limit (<2.4 × 10−10) at concentrations equivalent to 32 × MIC. TP0480066 also showed potent in vitro bactericidal activity and in vivo efficacy in a mouse model of N. gonorrhoeae infection. These data suggest that TP0480066 is a candidate antimicrobial agent for gonococcal infections.


1996 ◽  
Vol 40 (12) ◽  
pp. 2714-2720 ◽  
Author(s):  
F Blanche ◽  
B Cameron ◽  
F X Bernard ◽  
L Maton ◽  
B Manse ◽  
...  

Staphylococcus aureus gyrA and gyrB genes encoding DNA gyrase subunits were cloned and coexpressed in Escherichia coli under the control of the T7 promoter-T7 RNA polymerase system, leading to soluble gyrase which was purified to homogeneity. Purified gyrase was catalytically indistinguishable from the gyrase purified from S. aureus and did not contain detectable amounts of topoisomerases from the E. coli host. Topoisomerase IV subunits GrlA and GrlB from S. aureus were also expressed in E. coli and were separately purified to apparent homogeneity. Topoisomerase IV, which was reconstituted by mixing equimolar amounts of GrlA and GrlB, had both ATP-dependent decatenation and DNA relaxation activities in vitro. This enzyme was more sensitive than gyrase to inhibition by typical fluoroquinolone antimicrobial agents such as ciprofloxacin or sparfloxacin, adding strong support to genetic studies which indicate that topoisomerase IV is the primary target of fluoroquinolones in S. aureus. The results obtained with ofloxacin suggest that this fluoroquinolone could also primarily target gyrase. No cleavable complex could be detected with S. aureus gyrase upon incubation with ciprofloxacin or sparfloxacin at concentrations which fully inhibit DNA supercoiling. This suggests that these drugs do not stabilize the open DNA-gyrase complex, at least under standard in vitro incubation conditions, but are more likely to interfere primarily with the DNA breakage step, contrary to what has been reported with E. coli gyrase. Both S. aureus gyrase-catalyzed DNA supercoiling and S. aureus topoisomerase IV-catalyzed decatenation were dramatically stimulated by potassium glutamate or aspartate (500- and 50-fold by 700 and 350 mM glutamate, respectively), whereas topoisomerase IV-dependent DNA relaxation was inhibited 3-fold by 350 mM glutamate. The relevance of the effect of dicarboxylic amino acids on the activities of type II topoisomerases is discussed with regard to the intracellular osmolite composition of S. aureus.


2020 ◽  
Vol 64 (5) ◽  
Author(s):  
Gregory G. Stone ◽  
Patricia A. Bradford ◽  
Margaret Tawadrous ◽  
Dianna Taylor ◽  
Mary Jane Cadatal ◽  
...  

ABSTRACT Nosocomial pneumonia (NP), including ventilator-associated pneumonia (VAP), is increasingly associated with multidrug-resistant Gram-negative pathogens. This study describes the in vitro activity of ceftazidime-avibactam, ceftazidime, and relevant comparator agents against bacterial pathogens isolated from patients with NP, including VAP, enrolled in a ceftazidime-avibactam phase 3 trial. Gram-positive pathogens were included if coisolated with a Gram-negative pathogen. In vitro susceptibility was determined at a central laboratory using Clinical and Laboratory Standards Institute broth microdilution methods. Of 817 randomized patients, 457 (55.9%) had ≥1 Gram-negative bacterial pathogen(s) isolated at baseline, and 149 (18.2%) had ≥1 Gram-positive pathogen(s) coisolated. The most common isolated pathogens were Klebsiella pneumoniae (18.8%), Pseudomonas aeruginosa (15.8%), and Staphylococcus aureus (11.5%). Ceftazidime-avibactam was highly active in vitro against 370 isolates of Enterobacteriaceae, with 98.6% susceptible (MIC90, 0.5 μg/ml) compared with 73.2% susceptible for ceftazidime (MIC90, >64 μg/ml). The percent susceptibility values for ceftazidime-avibactam and ceftazidime against 129 P. aeruginosa isolates were 88.4% and 72.9% (MIC90 values of 16 μg/ml and 64 μg/ml), respectively. Among ceftazidime-nonsusceptible Gram-negative isolates, ceftazidime-avibactam percent susceptibility values were 94.9% for 99 Enterobacteriaceae and 60.0% for 35 P. aeruginosa. MIC90 values for linezolid and vancomycin (permitted per protocol for Gram-positive coverage) were within their respective MIC susceptibility breakpoints against the Gram-positive pathogens isolated. This analysis demonstrates that ceftazidime-avibactam was active in vitro against the majority of Enterobacteriaceae and P. aeruginosa isolates from patients with NP, including VAP, in a phase 3 trial. (This study has been registered at ClinicalTrials.gov under identifier NCT01808092.)


2012 ◽  
Vol 44 (6) ◽  
pp. 490-499 ◽  
Author(s):  
Liyi Huang ◽  
Yi Xuan ◽  
Yuichiro Koide ◽  
Timur Zhiyentayev ◽  
Masamitsu Tanaka ◽  
...  

2000 ◽  
pp. 847-851
Author(s):  
MITSURU YASUDA ◽  
HIDEYUKI FUKUDA ◽  
SHIGEAKI YOKOI ◽  
SATOSHI ISHIHARA ◽  
YUKIMICHI KAWADA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document