scholarly journals Identification and characterization of RNA aptamers: A long aptamer blocks the AMPA receptor and a short aptamer blocks both AMPA and kainate receptors

2017 ◽  
Vol 292 (18) ◽  
pp. 7338-7347 ◽  
Author(s):  
William J. Jaremko ◽  
Zhen Huang ◽  
Wei Wen ◽  
Andrew Wu ◽  
Nicholas Karl ◽  
...  

AMPA and kainate receptors, along with NMDA receptors, represent different subtypes of glutamate ion channels. AMPA and kainate receptors share a high degree of sequence and structural similarities, and excessive activity of these receptors has been implicated in neurological diseases such as epilepsy. Therefore, blocking detrimental activity of both receptor types could be therapeutically beneficial. Here, we report the use of an in vitro evolution approach involving systematic evolution of ligands by exponential enrichment with a single AMPA receptor target (i.e. GluA1/2R) to isolate RNA aptamers that can potentially inhibit both AMPA and kainate receptors. A full-length or 101-nucleotide (nt) aptamer selectively inhibited GluA1/2R with a KI of ∼5 μm, along with GluA1 and GluA2 AMPA receptor subunits. Of note, its shorter version (55 nt) inhibited both AMPA and kainate receptors. In particular, this shorter aptamer blocked equally potently the activity of both the GluK1 and GluK2 kainate receptors. Using homologous binding and whole-cell recording assays, we found that an RNA aptamer most likely binds to the receptor's regulatory site and inhibits it noncompetitively. Our results suggest the potential of using a single receptor target to develop RNA aptamers with dual activity for effectively blocking both AMPA and kainate receptors.

2007 ◽  
Vol 403 (1) ◽  
pp. 129-138 ◽  
Author(s):  
Dominique Lévesque ◽  
Jean-Denis Beaudoin ◽  
Sébastien Roy ◽  
Jean-Pierre Perreault

RNA possesses the ability to bind a wide repertoire of small molecules. Some of these binding interactions have been shown to be of primary importance in molecular biology. For example, several classes of mRNA domains, collectively referred to as riboswitches, have been shown to serve as RNA genetic control elements that sense the concentrations of specific metabolites (i.e. acting as direct sensors of chemical compounds). However, to date no RNA species binding a hormone has been reported. Here, we report that the use of an appropriate SELEX (systematic evolution of ligands by exponential enrichment) strategy results in the isolation of thyroxine-specific aptamers. Further biochemical characterization of these aptamers, including mutational studies, the use of transcripts with site-specific modified nucleotides, nuclease and chemical probing, binding-shift assays and CD, demonstrated that these RNA structures included a G-rich motif, reminiscent of a guanine quadruplex structure, adjacent to a helical region. The presence of the thyroxine appeared to be essential for the formation of the structural motif's scaffold. Moreover, the binding is shown to be specific to thyroxine (T4) and tri-iodothyronine (T3), the active forms of the hormone, whereas other inactive derivatives, including thyronine (T0), do not support complex formation. These results suggest that this aptamer specifically binds to the iodine moieties of the thyroxine, a previously unreported ability for an RNA molecule.


2018 ◽  
Vol 115 (51) ◽  
pp. 12997-13002 ◽  
Author(s):  
Charlotte Steenblock ◽  
Maria F. Rubin de Celis ◽  
Luis F. Delgadillo Silva ◽  
Verena Pawolski ◽  
Ana Brennand ◽  
...  

The adrenal gland is a master regulator of the human body during response to stress. This organ shows constant replacement of senescent cells by newly differentiated cells. A high degree of plasticity is critical to sustain homeostasis under different physiological demands. This is achieved in part through proliferation and differentiation of adult adrenal progenitors. Here, we report the isolation and characterization of a Nestin+ population of adrenocortical progenitors located under the adrenal capsule and scattered throughout the cortex. These cells are interconnected with progenitors in the medulla. In vivo lineage tracing revealed that, under basal conditions, this population is noncommitted and slowly migrates centripetally. Under stress, this migration is greatly enhanced, and the cells differentiate into steroidogenic cells. Nestin+ cells cultured in vitro also show multipotency, as they differentiate into mineralocorticoid and glucocorticoid-producing cells, which can be further influenced by the exposure to Angiotensin II, adrenocorticotropic hormone, and the agonist of luteinizing hormone-releasing hormone, triptorelin. Taken together, Nestin+ cells in the adult adrenal cortex exhibit the features of adrenocortical progenitor cells. Our study provides evidence for a role of Nestin+ cells in organ homeostasis and emphasizes their role under stress. This cell population might be a potential source of cell replacement for the treatment of adrenal insufficiency.


2008 ◽  
Vol 76 (12) ◽  
pp. 5883-5891 ◽  
Author(s):  
Angie E. Garcia ◽  
George Ösapay ◽  
Patti A. Tran ◽  
Jun Yuan ◽  
Michael E. Selsted

ABSTRACT θ-Defensins are macrocyclic antimicrobial peptides that were previously isolated from leukocytes of a single species, the rhesus macaque. We now report the characterization of baboon θ-defensins (BTDs) expressed in bone marrow and peripheral blood leukocytes. Four cDNAs encoding θ-defensin precursors were characterized, allowing for the prediction of 10 theoretical θ-defensins (BTD-1 to BTD-10) produced by binary, head-to-tail splicing of nonapeptides excised from paired precursors. Five of the predicted θ-defensins were purified from baboon leukocytes, and synthetic versions of each were prepared. Anti-θ-defensin antibody localized the peptides in circulating neutrophils and monocytes and in immature and mature myeloid elements in bone marrow. Each of the BTDs possessed antimicrobial activity against bacterial and fungal test organisms in vitro. Peptide activities varied markedly despite a high degree of sequence conservation among the θ-defensins tested. Thus, baboons express numerous θ-defensins which appear to differentially contribute to host defense against diverse pathogens.


2009 ◽  
Vol 191 (11) ◽  
pp. 3482-3491 ◽  
Author(s):  
Barbara A. Bensing ◽  
Paul M. Sullam

ABSTRACT The accessory Sec system of Streptococcus gordonii is essential for transport of the glycoprotein GspB to the bacterial cell surface. A key component of this dedicated transport system is SecA2. The SecA2 proteins of streptococci and staphylococci are paralogues of SecA and are presumed to have an analogous role in protein transport, but they may be specifically adapted for the transport of large, serine-rich glycoproteins. We used a combination of genetic and biochemical methods to assess whether the S. gordonii SecA2 functions similarly to SecA. Although mutational analyses demonstrated that conserved amino acids are essential for the function of SecA2, replacing such residues in one of two nucleotide binding folds had only minor effects on SecA2 function. SecA2-mediated transport is highly sensitive to azide, as is SecA-mediated transport. Comparison of the S. gordonii SecA and SecA2 proteins in vitro revealed that SecA2 can hydrolyze ATP at a rate similar to that of SecA and is comparably sensitive to azide but that the biochemical properties of these enzymes are subtly different. That is, SecA2 has a lower solubility in aqueous solutions and requires higher Mg2+ concentrations for maximal activity. In spite of the high degree of similarity between the S. gordonii paralogues, analysis of SecA-SecA2 chimeras indicates that the domains are not readily interchangeable. This suggests that specific, unique contacts between SecA2 and other components of the accessory Sec system may preclude cross-functioning with the canonical Sec system.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Flávia M. Zimbres ◽  
Attila Tárnok ◽  
Henning Ulrich ◽  
Carsten Wrenger

Worldwide the entire human population is at risk of infectious diseases of which a high degree is caused by pathogenic protozoans, worms, bacteria, and virus infections. Moreover the current medications against pathogenic agents are losing their efficacy due to increasing and even further spreading drug resistance. Therefore, there is an urgent need to discover novel diagnostic as well as therapeutic tools against infectious agents. In view of that, the Systematic Evolution of Ligands by Exponential Enrichment (SELEX) represents a powerful technology to target selectively pathogenic factors as well as entire bacteria or viruses. SELEX uses a large combinatorial oligonucleic acid library (DNA or RNA) which is processed a by high-fluxin vitroscreen of iterative cycles. The selected ligands, termed aptamers, are characterized by high specificity and affinity to their target molecule, which are already exploited in diagnostic and therapeutic applications. In this minireview we will discuss the current status of the SELEX technique applied on bacterial and viral pathogens.


Author(s):  
Kaila Petronila Medina-Alarcón ◽  
Iara Pengo Tobias da Silva ◽  
Giovana Garcia Ferin ◽  
Marcelo A. Pereira-da-Silva ◽  
Caroline Maria Marcos ◽  
...  

Co-infection of Mycobacterium tuberculosis and Paracoccidioides brasiliensis, present in 20% in Latin America, is a public health problem due to a lack of adequate diagnosis. These microorganisms are capable of forming biofilms, mainly in immunocompromised patients, which can lead to death due to the lack of effective treatment for both diseases. The present research aims to show for the first time the formation of mixed biofilms of M. tuberculosis and P. brasiliensis (Pb18) in vitro, as well as to evaluate the action of 3’hydroxychalcone (3’chalc) -loaded nanoemulsion (NE) (NE3’chalc) against monospecies and mixed biofilms, the formation of mixed biofilms of M. tuberculosis H37Rv (ATCC 27294), 40Rv (clinical strains) and P. brasiliensis (Pb18) (ATCC 32069), and the first condition of formation (H37Rv +Pb18) and (40Rv + Pb18) and second condition of formation (Pb18 + H37Rv) with 45 days of total formation time under both conditions. The results of mixed biofilms (H37Rv + Pb18) and (40Rv + Pb18), showed an organized network of M. tuberculosis bacilli in which P. brasiliensis yeasts are connected with a highly extracellular polysaccharide matrix. The (Pb18 + H37Rv) showed a dense biofilm with an apparent predominance of P. brasiliensis and fragments of M. tuberculosis. PCR assays confirmed the presence of the microorganisms involved in this formation. The characterization of NE and NE3’chalc displayed sizes from 145.00 ± 1.05 and 151.25 ± 0.60, a polydispersity index (PDI) from 0.20± 0.01 to 0.16± 0.01, and zeta potential -58.20 ± 0.92 mV and -56.10 ± 0.71 mV, respectively. The atomic force microscopy (AFM) results showed lamellar structures characteristic of NE. The minimum inhibitory concentration (MIC) values of 3’hidroxychalcone (3’chalc) range from 0.97- 7.8 µg/mL and NE3’chalc from 0.24 - 3.9 µg/mL improved the antibacterial activity when compared with 3’chalc-free, no cytotoxicity. Antibiofilm assays proved the efficacy of 3’chalc-free incorporation in NE. These findings contribute to a greater understanding of the formation of M. tuberculosis and P. brasiliensis in the mixed biofilm. In addition, the findings present a new possible NE3’chalc treatment alternative for the mixed biofilms of these microorganisms, with a high degree of relevance due to the lack of other treatments for these comorbidities.


2020 ◽  
Vol 48 (4) ◽  
pp. 1669-1680 ◽  
Author(s):  
Sougata Dey ◽  
Jonathan T Sczepanski

Abstract The development of structure-specific RNA binding reagents remains a central challenge in RNA biochemistry and drug discovery. Previously, we showed in vitro selection techniques could be used to evolve l-RNA aptamers that bind tightly to structured d-RNAs. However, whether similar RNA-binding properties can be achieved using aptamers composed of l-DNA, which has several practical advantages compared to l-RNA, remains unknown. Here, we report the discovery and characterization of the first l-DNA aptamers against a structured RNA molecule, precursor microRNA-155, thereby establishing the capacity of DNA and RNA molecules of the opposite handedness to form tight and specific ‘cross-chiral’ interactions with each other. l-DNA aptamers bind pre-miR-155 with low nanomolar affinity and high selectivity despite the inability of l-DNA to interact with native d-RNA via Watson–Crick base pairing. Furthermore, l-DNA aptamers inhibit Dicer-mediated processing of pre-miRNA-155. The sequence and structure of l-DNA aptamers are distinct from previously reported l-RNA aptamers against pre-miR-155, indicating that l-DNA and l-RNA interact with the same RNA sequence through unique modes of recognition. Overall, this work demonstrates that l-DNA may be pursued as an alternative to l-RNA for the generation of RNA-binding aptamers, providing a robust and practical approach for targeting structured RNAs.


1985 ◽  
Vol 101 (3) ◽  
pp. 1144-1152 ◽  
Author(s):  
P Collin-Osdoby ◽  
W S Adair

Chlamydomonas flagellar sexual agglutinins are responsible for the adhesion of opposite mating-type (plus and minus) gametes during the first stages of mating. Purification and partial characterization of the plus agglutinin was previously reported (Adair, W. S., C. J. Hwang, and U. W. Goodenough, 1983, Cell, 33:183-193). Here we characterize the purified minus molecule. We show it to be a high molecular weight, hydroxyproline-rich glycoprotein that migrates in the 3% stacking region of an SDS-polyacrylamide gel and is absent from two nonagglutinating minus mutants. Plus and minus agglutinins are remarkably similar, although nonidentical, in amino acid composition, molecular morphology, and reactivity in vivo and in vitro with monoclonal antibodies raised against the plus agglutinin. Moreover, the adhesiveness of both plus and minus agglutinins, when coupled to agarose beads, is abolished by thermolysin, trypsin, periodate, alkaline borohydride, reducing agents, or heat, but unaffected by exo- or endoglycosidases. The minus agglutinin, however, migrates just ahead of the plus molecule on SDS PAGE, is excluded from an anion-exchange (Mono Q) column, elutes earlier during hydrophobic interaction (Bio-gel TSK Phenyl 5PW) chromatography, and is sensitive to chymotrypsin digestion (unlike the plus agglutinin); therefore, it differs from the plus agglutinin in apparent molecular weight, net charge, relative hydrophobicity and proteolytic susceptibility. Nevertheless, our results generally demonstrate a high degree of homology between these complementary cell-cell recognition/adhesion molecules, which suggests that they are specified by genes that have a common evolutionary origin.


Sign in / Sign up

Export Citation Format

Share Document