scholarly journals The Adenovirus E1A Protein Targets the SAGA but Not the ADA Transcriptional Regulatory Complex through Multiple Independent Domains

2002 ◽  
Vol 277 (34) ◽  
pp. 30844-30851 ◽  
Author(s):  
Michael Shuen ◽  
Nikita Avvakumov ◽  
Paul G. Walfish ◽  
Chris J. Brandl ◽  
Joe S. Mymryk
1996 ◽  
Vol 16 (10) ◽  
pp. 5737-5743 ◽  
Author(s):  
M E Miller ◽  
B R Cairns ◽  
R S Levinson ◽  
K R Yamamoto ◽  
D A Engel ◽  
...  

Expression of the adenovirus E1A243 oncoprotein in Saccharomyces cerevisiae produces a slow-growth phenotype with accumulation of cells in the G1 phase of the cell cycle. This effect is due to the N-terminal and CR1 domains of E1A243, which in rodent cells are involved in triggering cellular transformation and also in binding to the cellular transcriptional coactivator p300. A genetic screen was undertaken to identify genes required for the function of E1A243 in S. cerevisiae. This screen identified SNF12, a gene encoding the 73-kDa subunit of the SWI/SNF transcriptional regulatory complex. Mutation of genes encoding known members of the SWI/SNF complex also led to loss of E1A function, suggesting that the SWI/SNF complex is a target of E1A243. Moreover, expression of E1A in wild-type cells specifically blocked transcriptional activation of the INO1 and SUC2 genes, whose activation pathways are distinct but have a common requirement for the SWI/SNF complex. These data demonstrate a specific functional interaction between E1A and the SWI/SNF complex and suggest that a similar interaction takes place in rodent and human cells.


1989 ◽  
Vol 3 (12a) ◽  
pp. 1991-2002 ◽  
Author(s):  
U Muller ◽  
M P Roberts ◽  
D A Engel ◽  
W Doerfler ◽  
T Shenk

1995 ◽  
Vol 15 (7) ◽  
pp. 3487-3495 ◽  
Author(s):  
M P Draper ◽  
C Salvadore ◽  
C L Denis

The CCR4 protein from Saccharomyces cerevisiae is a component of a multisubunit complex that is required for the regulation of a number of genes in yeast cells. We report here the identification of a mouse protein (mCAF1 [mouse CCR4-associated factor 1]) which is capable of interacting with and binding to the yeast CCR4 protein. The mCAF1 protein was shown to have significant similarity to proteins from humans, Caenorhabditis elegans, Arabidopsis thaliana, and S. cerevisiae. The yeast gene (yCAF1) had been previously cloned as the POP2 gene, which is required for expression of several genes. Both yCAF1 (POP2) and the C. elegans homolog of CAF1 were shown to genetically interact with CCR4 in vivo, and yCAF1 (POP2) physically associated with CCR4. Disruption of the CAF1 (POP2) gene in yeast cells gave phenotypes and defects in transcription similar to those observed with disruptions of CCR4, including the ability to suppress spt10-enhanced ADH2 expression. In addition, yCAF1 (POP2) when fused to LexA was capable of activating transcription. mCAF1 could also activate transcription when fused to LexA and could functionally substitute for yCAF1 in allowing ADH2 expression in an spt10 mutant background. These data imply that CAF1 is a component of the CCR4 protein complex and that this complex has retained evolutionarily conserved functions important to eukaryotic transcription.


1998 ◽  
Vol 273 (35) ◽  
pp. 22563-22569 ◽  
Author(s):  
Jean-Pierre Rouault ◽  
Déborah Prévôt ◽  
Cyril Berthet ◽  
Anne-Marie Birot ◽  
Marc Billaud ◽  
...  

1995 ◽  
Vol 129 (3) ◽  
pp. 779-788 ◽  
Author(s):  
R S Slack ◽  
I S Skerjanc ◽  
B Lach ◽  
J Craig ◽  
K Jardine ◽  
...  

The retinoblastoma (RB) protein is present at low levels in early mouse embryos and in pluripotent P19 embryonal carcinoma cells; however, the levels of RB rise dramatically in neuroectoderm formed both in embryos and in differentiating cultures of P19 cells. To investigate the effect of inactivating RB and related proteins p107 and p130, we transfected P19 cells with genes encoding mutated versions of the adenovirus E1A protein that bind RB and related proteins. When these E1A-expressing P19 cells were induced to differentiate into neuroectoderm, there was a striking rise in the expression of c-fos and extensive cell death. The ultrastructural and biochemical characteristics of the dying cells were indicative of apoptosis. The dying cells were those committed to the neural lineages because neurons and astrocytes were lost from differentiating cultures. Cell death was dependent on the ability of the E1A protein to bind RB and related proteins. Our results suggest that proteins of the RB family are essential for the development of the neural lineages and that the absence of functional RB activity triggers apoptosis of differentiating neuroectodermal cells.


2018 ◽  
Vol 115 (40) ◽  
pp. 10016-10021 ◽  
Author(s):  
Keelan Z. Guiley ◽  
Audra N. Iness ◽  
Siddharth Saini ◽  
Sarvind Tripathi ◽  
Joseph S. Lipsick ◽  
...  

The MuvB transcriptional regulatory complex, which controls cell-cycle-dependent gene expression, cooperates with B-Myb to activate genes required for the G2 and M phases of the cell cycle. We have identified the domain in B-Myb that is essential for the assembly of the Myb–MuvB (MMB) complex. We determined a crystal structure that reveals how this B-Myb domain binds MuvB through the adaptor protein LIN52 and the scaffold protein LIN9. The structure and biochemical analysis provide an understanding of how oncogenic B-Myb is recruited to regulate genes required for cell-cycle progression, and the MMB interface presents a potential therapeutic target to inhibit cancer cell proliferation.


2020 ◽  
Author(s):  
Hao-Xin Gui ◽  
Jun Peng ◽  
Ze-Ping Yang ◽  
Lu-Yao Chen ◽  
Hong Zeng ◽  
...  

Abstract c-Met hyperactivity has been observed in numerous neoplasms. Several researchers have shown that the abnormal activation of c-Met is mainly caused by transcriptional activation. However, the molecular mechanism behind this transcriptional regulation is poorly understood. Here, we suggest that Smad3 negatively regulates the expression and activation of c-Met via a transcriptional mechanism. We explore the molecular mechanisms that underlie Smad3-induced c-Met transcription inhibition. We found in contrast to the high expression of c-Met, Smad3 showed low protein and mRNA levels. Smad3 and c-Met expression was inconsistent between lung cancer tissues and cell lines. We also found that Smad3 overexpression suppresses whereas Smad3 knockdown significantly promotes EMT and production of the angiogenic factors VEGF, CTGF and COX-2 through the ERK1/2 pathway. In addition, Smad3 overexpression decreases whereas Smad3 knockdown significantly increases protein and mRNA levels of invasion related β-catenin and FAK through the PI3K/Akt pathway. Furthermore, using the ChIP analysis method, we demonstrate that a transcriptional regulatory complex consisting of HDAC1, Smad3 and mSin3A binds to the promoter of the c-Met gene. By either silencing endogenous mSin3A expression with siRNA or by pretreating cells with a specific HDAC1 inhibitor (MS-275), Smad3-induced transcriptional suppression of c-Met could be effectively attenuated. These results demonstrate that Smad3-induced inhibition of c-Met transcription depends on of a functional transcriptional regulatory complex that includes Smad3, mSin3A and HDAC1 at the c-Met promoter. Collectively, our findings reveal a new regulatory mechanism of c-Met signaling, and suggest a potential molecular target for the development of anticancer drugs.


1991 ◽  
Vol 88 (12) ◽  
pp. 5124-5128 ◽  
Author(s):  
N. Horikoshi ◽  
K. Maguire ◽  
A. Kralli ◽  
E. Maldonado ◽  
D. Reinberg ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document