scholarly journals Analysis of the Antimalarial Drug Resistance Protein Pfcrt Expressed in Yeast

2002 ◽  
Vol 277 (51) ◽  
pp. 49767-49775 ◽  
Author(s):  
Hanbang Zhang ◽  
Ellen M. Howard ◽  
Paul D. Roepe

Mutations in the novel membrane protein Pfcrt were recently found to be essential for chloroquine resistance (CQR) inPlasmodium falciparum, the parasite responsible for most lethal human malaria (Fidock, D. A., Nomura, T., Talley, A. K., Cooper, R. A., Dzekunov, S. M., Ferdig, M. T., Ursos, L. M., Sidhu, A. B., Naude, B., Deitsch, K. W., Su, X. Z., Wootton, J. C., Roepe, P. D., and Wellems, T. E. (2000)Mol. Cell6, 861–871). Pfcrt is localized to the digestive vacuolar membrane of the intraerythrocytic parasite and may function as a transporter. Study of this putative transport function would be greatly assisted by overexpression in yeast followed by characterization of membrane vesicles. Unfortunately, the very high AT content of malarial genes precludes efficient heterologous expression. Thus, we back-translated Pfcrt to design idealized genes with preferred yeast codons, no long poly(A) sequences, and minimal stem-loop structure. We synthesized a designed gene with a two-step PCR method, fused this to N- and C-terminal sequences to aid membrane insertion and purification, and now report efficient expression of wild type and mutant Pfcrt proteins in the plasma membrane ofSaccharomyces cerevisiaeandPichia pastorisyeast. To our knowledge, this is the first successful expression of a full-length malarial parasite integral membrane protein in yeast. Purified membranes and inside-out plasma membrane vesicle preparations were used to analyze wild typeversusCQR-conferring mutant Pfcrt function, which may include effects on H+transport (Dzekunov, S., Ursos, L. M. B., and Roepe, P. D. (2000)Mol. Biochem. Parasitol.110, 107–124), and to perfect a rapid purification of biotinylated Pfcrt. These data expand on the role of Pfcrt in conferring CQR and define a productive route for analysis of importantP. falciparumtransport proteins and membrane associated vaccine candidates.

1992 ◽  
Vol 263 (3) ◽  
pp. C590-C597 ◽  
Author(s):  
P. Golstein ◽  
M. Abramow ◽  
J. E. Dumont ◽  
R. Beauwens

The uptake of radioactive iodide or chloride by plasma membrane vesicles of bovine thyroid was studied by a rapid filtration technique. A Na(+)-I- cotransport was demonstrated. When this Na(+)-I- cotransport is inactive (i.e., at 4 degrees C and in the absence of Na+), an uptake of iodide above chemical equilibrium could be induced, driven by the membrane potential. The latter was set up by allowing potassium to diffuse into the membrane vesicles in the presence of valinomycin and of an inward K+ gradient. This potential difference (positive inside) induced the uptake of iodide (or other anion present). The data support the existence of two anionic channels. The first one, observed at low near-physiological iodide concentration (micromolar range), which exhibits a high permeability and specificity for iodide (hence called the iodide channel), has a Km of 70 microM. The other one appears similar to the epithelial anion channel as described by Landry et al. (J. Gen. Physiol. 90: 779-798, 1987); it is still about fourfold more permeable to iodide than to chloride and presents a Km of 33 mM. Under physiological conditions the latter channel would mediate chloride transport, and the iodide channel, which is proposed to be restricted to the apical plasma membrane domain of the thyrocyte, transports iodide from the cytosol to the colloid space.


2004 ◽  
Vol 379 (1) ◽  
pp. 31-38 ◽  
Author(s):  
Emily R. SLEPKOV ◽  
Signy CHOW ◽  
M. Joanne LEMIEUX ◽  
Larry FLIEGEL

NHE1 (Na+/H+ exchanger isoform 1) is a ubiquitously expressed integral membrane protein that regulates intracellular pH in mammalian cells. Proline residues within transmembrane segments have unusual properties, acting as helix breakers and increasing flexibility of membrane segments, since they lack an amide hydrogen. We examined the importance of three conserved proline residues in TM IV (transmembrane segment IV) of NHE1. Pro167 and Pro168 were mutated to Gly, Ala or Cys, and Pro178 was mutated to Ala. Pro168 and Pro178 mutant proteins were expressed at levels similar to wild-type NHE1 and were targeted to the plasma membrane. However, the mutants P167G (Pro167→Gly), P167A and P167C were expressed at lower levels compared with wild-type NHE1, and a significant portion of P167G and P167C were retained intracellularly, possibly indicating induced changes in the structure of TM IV. P167G, P167C, P168A and P168C mutations abolished NHE activity, and P167A and P168G mutations caused markedly decreased activity. In contrast, the activity of the P178A mutant was not significantly different from that of wild-type NHE1. The results indicate that both Pro167 and Pro168 in TM IV of NHE1 are required for normal NHE activity. In addition, mutation of Pro167 affects the expression and membrane targeting of the exchanger. Thus both Pro167 and Pro168 are strictly required for NHE function and may play critical roles in the structure of TM IV of the NHE.


1969 ◽  
Vol 41 (2) ◽  
pp. 378-392 ◽  
Author(s):  
Charles W. Boone ◽  
Lincoln E. Ford ◽  
Howard E. Bond ◽  
Donald C. Stuart ◽  
Dianne Lorenz

A method for isolating plasma membrane fragments from HeLa cells is described. The procedure starts with the preparation of cell membrane "ghosts," obtained by gentle rupture of hypotonically swollen cells, evacuation of most of the cell contents by repeated washing, and isolation of the ghosts on a discontinuous sucrose density gradient. The ghosts are then treated by minimal sonication (5 sec) at pH 8.6, which causes the ghost membranes to pinch off into small vesicles but leaves any remaining larger intracellular particulates intact and separable by differential centrifugation. The ghost membrane vesicles are then subjected to isopycnic centrifugation on a 20–50% w/w continuous sucrose gradient in tris-magnesium buffer, pH 8.6. A band of morphologically homogeneous smooth vesicles, derived principally from plasma membrane, is recovered at 30–33% (peak density = 1.137). The plasma membrane fraction contained a Na-K-activated ATPase activity of 1.5 µmole Pi/hr per mg, 3% RNA, and 13.8% of the NADH-cytochrome c reductase activity of a heavier fraction from the same gradient which contained mitochondria and rough endoplasmic vesicles. The plasma membranes of viable HeLa cells were marked with 125I-labeled horse antibody and followed through the isolation procedure. The specific antibody binding of the plasma membrane vesicle fraction was increased 49-fold over that of the original whole cells.


1982 ◽  
Vol 208 (3) ◽  
pp. 685-693 ◽  
Author(s):  
Dennis C. Quinlan ◽  
C. Gordon Todderud ◽  
Darshan S. Kelley ◽  
Rolf F. Kletzien

The ability of liver efficiently to take up amino acids, particularly l-alanine, during starvation was studied in a cell-free system by isolating plasma-membrane vesicles in a transport-competent state from rat liver parenchymal cells. These membrane vesicles have the capacity to accumulate l-alanine against an apparent concentration gradient when exposed to an artificial and transient transmembrane Na+ gradient (extravesicular Na+ concentration greater than inside). The rate of accumulation of l-alanine is dependent on the plasma-membrane vesicle concentration, and the steady-state concentration attained is inversely related to the osmolarity of the medium. The Na+-mediated stimulation is not exhibited if the membrane vesicles are pre-equilibrated with NaCl, if K+ or Li+ are substituted for Na+, or if SO42− replaces Cl− as the counterion. The apparent active transport of l-alanine into the membrane vesicles appears to occur by an electrogenic mechanism: (1) the use of NaSCN significantly heightens the early concentrative phase of transport when compared with the effect of NaCl; (2) an enhanced active transport is also observed when a valinomycin-induced K+ efflux occurs concomitant with Na+ and l-alanine influx. Plasma-membrane vesicles isolated from liver parenchymal cells of a 24 h-starved rat exhibit an initial l-alanine transport rate that is 3–4 times that for membrane vesicles derived from a fed animal. The increased rate of l-alanine transport by plasma-membrane vesicles from starved animals can be obliterated by adrenalectomy and restored by administration of glucocorticoid. These results establish that stimulation of the gluconeogenic pathway by starvation involves a plasma-membrane-localized change affecting l-alanine transport which is regulated in part by the glucocorticoid hormones.


2004 ◽  
Vol 15 (4) ◽  
pp. 1533-1543 ◽  
Author(s):  
Tomasz J. Proszynski ◽  
Kai Simons ◽  
Michel Bagnat

Little is known about the mechanisms that determine localization of proteins to the plasma membrane in Saccharomyces cerevisiae. The length of the transmembrane domains and association of proteins with lipid rafts have been proposed to play a role in sorting to the cell surface. Here, we report that Fus1p, an O-glycosylated integral membrane protein involved in cell fusion during yeast mating, requires O-glycosylation for cell surface delivery. In cells lacking PMT4, encoding a mannosyltransferase involved in the initial step of O-glycosylation, Fus1p was not glycosylated and accumulated in late Golgi structures. A chimeric protein lacking O-glycosylation motif was missorted to the vacuole and accumulated in late Golgi in wild-type cells. Exocytosis of this protein could be restored by addition of a 33-amino acid portion of an O-glycosylated sequence from Fus1p. Our data suggest that O-glycosylation functions as a sorting determinant for cell surface delivery of Fus1p.


1998 ◽  
Vol 111 (10) ◽  
pp. 1405-1418 ◽  
Author(s):  
V. Traverso ◽  
J.F. Morris ◽  
R.J. Flower ◽  
J. Buckingham

Lipocortin 1 (annexin I) is a calcium- and phospholipid-binding annexin protein which can be externalised from cells despite the lack of a signal sequence. To determine its cellular distribution lipocortin 1 in A549 human lung adenocarcinoma cells was localised by light- and electron-microscopic immunocytochemistry and by cell fractionation and western blotting. Lipocortin 1 immunoreactivity is concentrated in prominent patches associated with the plasma membrane. The intensity of these patches varied with the confluence and duration of the culture and was not detectably diminished by an EDTA wash before fixation. Tubulin and cytokeratin 8 were colocalized with lipocortin 1 in the patches. Within the cells lipocortin 1 was distributed throughout the cytoplasm. Electron microscopy revealed prominent immunoreactivity along the plasma membrane with occasional large clusters of gold particles in contact with the membrane surface of the cells; within the cytoplasm the membrane of some vesicle/vacuole structures and some small electron-dense bodies was immunoreactive, but no immunogold particles were associated with the multilamellar bodies. Subcellular fractionation, extraction and western blotting showed that lipocortin 1 in the membrane pellet was present as two distinct fractions; one, intimately associated with the lipid bilayer, which behaved like an integral membrane protein and one loosely attached which behaved like a peripheral membrane protein. The results show that a substantial amounts of lipocortin 1 is concentrated in focal structures associated with and immediately beneath the plasma membrane. These might form part of the mechanism by which lipocortin 1 is released from the cells.


2004 ◽  
Vol 15 (3) ◽  
pp. 1024-1030 ◽  
Author(s):  
Guangwei Du ◽  
Ping Huang ◽  
Bruce T. Liang ◽  
Michael A. Frohman

Phospholipase D (PLD) is a key facilitator of multiple types of membrane vesicle trafficking events. Two PLD isoforms, PLD1 and PLD2, exist in mammals. Initial studies based on overexpression studies suggested that in resting cells, human PLD1 localized primarily to the Golgi and perinuclear vesicles in multiple cell types. In contrast, overexpressed mouse PLD2 was observed to localize primarily to the plasma membrane, although internalization on membrane vesicles was observed subsequent to serum stimulation. A recent report has suggested that the assignment of PLD2 to the plasma membrane is in error, because the endogenous isoform in rat secretory cells was imaged and found to be present primarily in the Golgi apparatus. We have reexamined this issue by using a monoclonal antibody specific for mouse PLD2, and find, as reported initially using overexpression studies, that endogenous mouse PLD2 is detected most readily at the plasma membrane in multiple cell types. In addition, we report that mouse, rat, and human PLD2 when overexpressed all similarly localize to the plasma membrane in cell lines from all three species. Finally, studies conducted using overexpression of wild-type active or dominant-negative isoforms of PLD2 and RNA interference-mediated targeting of PLD2 suggest that PLD2 functions at the plasma membrane to facilitate endocytosis of the angiotensin II type 1 receptor.


2012 ◽  
Vol 23 (6) ◽  
pp. 1010-1023 ◽  
Author(s):  
Lukas Stiburek ◽  
Jana Cesnekova ◽  
Olga Kostkova ◽  
Daniela Fornuskova ◽  
Kamila Vinsova ◽  
...  

Mitochondrial ATPases associated with diverse cellular activities (AAA) proteases are involved in the quality control and processing of inner-membrane proteins. Here we investigate the cellular activities of YME1L, the human orthologue of the Yme1 subunit of the yeast i‑AAA complex, using stable short hairpin RNA knockdown and expression experiments. Human YME1L is shown to be an integral membrane protein that exposes its carboxy-terminus to the intermembrane space and exists in several complexes of 600–1100 kDa. The stable knockdown of YME1L in human embryonic kidney 293 cells led to impaired cell proliferation and apoptotic resistance, altered cristae morphology, diminished rotenone-sensitive respiration, and increased susceptibility to mitochondrial membrane protein carbonylation. Depletion of YME1L led to excessive accumulation of nonassembled respiratory chain subunits (Ndufb6, ND1, and Cox4) in the inner membrane. This was due to a lack of YME1L proteolytic activity, since the excessive accumulation of subunits was reversed by overexpression of wild-type YME1L but not a proteolytically inactive YME1L variant. Similarly, the expression of wild-type YME1L restored the lamellar cristae morphology of YME1L-deficient mitochondria. Our results demonstrate the importance of mitochondrial inner-membrane proteostasis to both mitochondrial and cellular function and integrity and reveal a novel role for YME1L in the proteolytic regulation of respiratory chain biogenesis.


1992 ◽  
Vol 281 (2) ◽  
pp. 425-430 ◽  
Author(s):  
K Christiansen ◽  
J Carlsen

Purified human insulin receptors were inserted into placental plasma-membrane vesicles by fusion of membranes with receptor-lysophosphatidylcholine micelles. Scatchard analysis of insulin binding showed that about 10-15% of the added receptors became inserted into the membrane. The receptor number could be increased about 3-fold, corresponding to approx. 5 pmol of receptor/mg of membrane protein. The receptors became firmly bound to the membrane, as they could not be removed by extensive wash. The insertion of exogenous receptors could be demonstrated by immunoblotting. The inserted insulin receptor had the same insulin-binding affinity as the isolated receptor and the endogenous receptor of the membrane. Insulin binding in the presence or absence of Triton X-100 revealed that more than 80% of the exogenous receptors had a right-side-out orientation. Function of the inserted receptors, as observed by insulin-stimulated autophosphorylation, could be demonstrated. About 80% of the added lysophospholipid, corresponding to approx. 160 nmol of lysophospholipid/mg of membrane protein, became integrated into the membrane and was partly metabolized to phospholipid and to non-esterified fatty acid. The method of insertion of isolated insulin receptors using the natural detergent, lysophospholipid, may be a method for insertion of receptors into intact cells, where the lysophospholipid, as in the plasma-membrane vesicles, will be acylated to phospholipid.


2016 ◽  
Vol 44 (2) ◽  
pp. 474-478 ◽  
Author(s):  
Chris MacDonald ◽  
Robert C. Piper

Sorting internalized proteins and lipids back to the cell surface controls the supply of molecules throughout the cell and regulates integral membrane protein activity at the surface. One central process in mammalian cells is the transit of cargo from endosomes back to the plasma membrane (PM) directly, along a route that bypasses retrograde movement to the Golgi. Despite recognition of this pathway for decades we are only beginning to understand the machinery controlling this overall process. The budding yeast Saccharomyces cerevisiae, a stalwart genetic system, has been routinely used to identify fundamental proteins and their modes of action in conserved trafficking pathways. However, the study of cell surface recycling from endosomes in yeast is hampered by difficulties that obscure visualization of the pathway. Here we briefly discuss how recycling is likely a more prevalent process in yeast than is widely appreciated and how tools might be built to better study the pathway.


Sign in / Sign up

Export Citation Format

Share Document