scholarly journals The Small Nuclear RNA-activating Protein 190 Myb DNA Binding Domain Stimulates TATA Box-binding Protein-TATA Box Recognition

2003 ◽  
Vol 278 (20) ◽  
pp. 18649-18657 ◽  
Author(s):  
Craig S. Hinkley ◽  
Heather A. Hirsch ◽  
Liping Gu ◽  
Brandon LaMere ◽  
R. William Henry
1996 ◽  
Vol 16 (5) ◽  
pp. 1955-1965 ◽  
Author(s):  
V Mittal ◽  
M A Cleary ◽  
W Herr ◽  
N Hernandez

The RNA polymerase II and III human small nuclear RNA promoters have a common basal element, the proximal sequence element, which binds the TATA box-binding protein-containing complex SNAPc. They also contain an enhancer characterized by a highly conserved octamer sequence, which constitutes a binding site for the broadly expressed POU domain transcription factor Oct-1. The POU domain is a bipartite DNA-binding domain consisting of a POU-homeo (POUH) domain and a POU-specific (POUs) domain joined by a flexible linker. Here, we show that the Oct-1 POU domain but not the related Pit-1 POU domain can facilitate the binding of SNAPc to the proximal sequence element, and activate transcription. The effect is probably mediated by protein-protein contacts, and 1 of 30 amino acid differences between the Oct-1 and Pit-1 POUs domains is the key determinant for the differential interaction with SNAPc and the ability to activate transcription. These results show that a function that is the hallmark of activation domains, namely, recruitment of a basal transcription complex resulting in activation of transcription, can be performed by a DNA-binding domain. In this case, subtle changes between activator DNA-binding domains, as subtle as a single amino acid difference, can profoundly affect interaction with the basal transcription machinery.


1997 ◽  
Vol 17 (1) ◽  
pp. 36-45 ◽  
Author(s):  
K Yeung ◽  
S Kim ◽  
D Reinberg

The heterotetrameric Dr1-DRAP1 transcriptional repressor complex was functionally dissected. Dr1 was found to contain two domains required for repression of transcription. The tethering domain interacts with the TATA box binding protein and directs the repressor complex to the promoter. This tethering domain can be replaced by a domain conferring sequence-specific recognition to the repressor complex. In the absence of the tethering domain, Dr1 interacts with its corepressor DRAP1, but this interaction is not functional. The enhancement of Dr1-mediated repression of transcription by DRAP1 requires the tethering domain. The second domain of Dr1 is the repression domain, which is glutamine-alanine rich. A 65-amino-acid polypeptide containing the repression domain fused to the Ga14 DNA binding domain repressed transcription when directed to TATA-containing and TATA-less promoters. This repression domain was also found to functionally and directly interact with the TATA box binding protein.


1994 ◽  
Vol 14 (3) ◽  
pp. 1852-1860
Author(s):  
K Nakagomi ◽  
Y Kohwi ◽  
L A Dickinson ◽  
T Kohwi-Shigematsu

The nuclear matrix attachment DNA (MAR) binding protein SATB1 is a sequence context-specific binding protein that binds in the minor groove, making virtually no contact with the DNA bases. The SATB1 binding sites consist of a special AT-rich sequence context in which one strand is well-mixed A's, T's, and C's, excluding G's (ATC sequences), which is typically found in clusters within different MARs. To determine the extent of conservation of the SATB1 gene among different species, we cloned a mouse homolog of the human STAB1 cDNA from a cDNA expression library of the mouse thymus, the tissue in which this protein is predominantly expressed. This mouse cDNA encodes a 764-amino-acid protein with a 98% homology in amino acid sequence to the human SATB1 originally cloned from testis. To characterize the DNA binding domain of this novel class of protein, we used the mouse SATB1 cDNA and delineated a 150-amino-acid polypeptide as the binding domain. This region confers full DNA binding activity, recognizes the specific sequence context, and makes direct contact with DNA at the same nucleotides as the whole protein. This DNA binding domain contains a novel DNA binding motif: when no more than 21 amino acids at either the N- or C-terminal end of the binding domain are deleted, the majority of the DNA binding activity is lost. The concomitant presence of both terminal sequences is mandatory for binding. These two terminal regions consist of hydrophilic amino acids and share homologous sequences that are different from those of any known DNA binding motifs. We propose that the DNA binding region of SATB1 extends its two terminal regions toward DNA to make direct contact with DNA.


1992 ◽  
Vol 12 (3) ◽  
pp. 1209-1217
Author(s):  
C F Hardy ◽  
D Balderes ◽  
D Shore

RAP1 is an essential sequence-specific DNA-binding protein in Saccharomyces cerevisiae whose binding sites are found in a large number of promoters, where they function as upstream activation sites, and at the silencer elements of the HMR and HML mating-type loci, where they are important for repression. We have examined the involvement of specific regions of the RAP1 protein in both repression and activation of transcription by studying the properties of a series of hybrid proteins containing RAP1 sequences fused to the DNA-binding domain of the yeast protein GAL4 (amino acids 1 to 147). GAL4 DNA-binding domain/RAP1 hybrids containing only the carboxy-terminal third of the RAP1 protein (which lacks the RAP1 DNA-binding domain) function as transcriptional activators of a reporter gene containing upstream GAL4 binding sites. Expression of some hybrids from the strong ADH1 promoter on multicopy plasmids has a dominant negative effect on silencers, leading to either partial or complete derepression of normally silenced genes. The GAL4/RAP1 hybrids have different effects on wild-type and several mutated but functional silencers. Silencers lacking either an autonomously replicating sequence consensus element or the RAP1 binding site are strongly derepressed, whereas the wild-type silencer or a silencer containing a deletion of the binding site for another silencer-binding protein, ABF1, are only weakly affected by hybrid expression. By examining a series of GAL4 DNA-binding domain/RAP1 hybrids, we have mapped the transcriptional activation and derepression functions to specific parts of the RAP1 carboxy terminus.(ABSTRACT TRUNCATED AT 250 WORDS)


2019 ◽  
Vol 95 (1) ◽  
pp. 130-149 ◽  
Author(s):  
Ángel Santiago ◽  
Rodrigo Said Razo‐Hernández ◽  
Nina Pastor

Sign in / Sign up

Export Citation Format

Share Document