scholarly journals The Spacious Active Site of a Y-Family DNA Polymerase Facilitates Promiscuous Nucleotide Incorporation Opposite a Bulky Carcinogen-DNA Adduct

2004 ◽  
Vol 279 (35) ◽  
pp. 36951-36961 ◽  
Author(s):  
Rebecca A. Perlow-Poehnelt ◽  
Ilya Likhterov ◽  
David A. Scicchitano ◽  
Nicholas E. Geacintov ◽  
Suse Broyde
2021 ◽  
Vol 478 (7) ◽  
pp. 1399-1412
Author(s):  
Evgeniy S. Shilkin ◽  
Anastasia S. Gromova ◽  
Margarita P. Smal ◽  
Alena V. Makarova

Y-family DNA polymerase iota (Pol ι) is involved in DNA damage response and tolerance. Mutations and altered expression level of POLI gene are linked to a higher incidence of cancer. We biochemically characterized five active site polymorphic variants of human Pol ι: R71G (rs3218778), P118L (rs554252419), I236M (rs3218784), E251K (rs3218783) and P365R (rs200852409). We analyzed fidelity of nucleotide incorporation on undamaged DNA, efficiency and accuracy of DNA damage bypass, as well as 5′-deoxyribophosphate lyase (dRP-lyase) activity. The I236M and P118L variants were indistinguishable from the wild-type Pol ι in activity. The E251K and P365R substitutions altered the spectrum of nucleotide incorporation opposite several undamaged DNA bases. The P365R variant also reduced the dRP-lyase activity and possessed the decreased TLS activity opposite 8-oxo-G. The R71G mutation dramatically affected the catalytic activities of Pol ι. The reduced DNA polymerase activity of the R71G variant correlated with an enhanced fidelity of nucleotide incorporation on undamaged DNA, altered lesion-bypass activity and reduced dRP-lyase activity. Therefore, this amino acid substitution likely alters Pol ι functions in vivo.


2003 ◽  
Vol 23 (8) ◽  
pp. 3008-3012 ◽  
Author(s):  
Robert E. Johnson ◽  
José Trincao ◽  
Aneel K. Aggarwal ◽  
Satya Prakash ◽  
Louise Prakash

ABSTRACT Although DNA polymerase η (Polη) and other Y family polymerases differ in sequence and function from classical DNA polymerases, they all share a similar right-handed architecture with the palm, fingers, and thumb domains. Here, we examine the role in Saccharomyces cerevisiae Polη of three conserved residues, tyrosine 64, arginine 67, and lysine 279, which come into close contact with the triphosphate moiety of the incoming nucleotide, in nucleotide incorporation. We find that mutational alteration of these residues reduces the efficiency of correct nucleotide incorporation very considerably. The high degree of conservation of these residues among the various Y family DNA polymerases suggests that these residues are also crucial for nucleotide incorporation in the other members of the family. Furthermore, we note that tyrosine 64 and arginine 67 are functionally equivalent to the deoxynucleotide triphosphate binding residues arginine 518 and histidine 506 in T7 DNA polymerase, respectively.


2017 ◽  
Vol 30 (11) ◽  
pp. 2002-2012 ◽  
Author(s):  
Nicole M. Antczak ◽  
Morgan R. Packer ◽  
Xueguang Lu ◽  
Ke Zhang ◽  
Penny J. Beuning

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Amit Sharma ◽  
Deepak T. Nair

Error-prone DNA synthesis in prokaryotes imparts plasticity to the genome to allow for evolution in unfavorable environmental conditions, and this phenomenon is termed adaptive mutagenesis. At a molecular level, adaptive mutagenesis is mediated by upregulating the expression of specialized error-prone DNA polymerases that generally belong to the Y-family, such as the polypeptide product of thedinBgene in case ofE. coli. However, unlikeE. coli, it has been seen that expression of the homologs ofdinBinMycobacterium tuberculosisare not upregulated under conditions of stress. These studies suggest that DinB homologs inMycobacteriamight not be able to promote mismatches and participate in adaptive mutagenesis. We show that a representative homolog fromMycobacterium smegmatis(MsDpo4) can carry out template-dependent nucleotide incorporation and therefore is a DNA polymerase. In addition, it is seen that MsDpo4 is also capable of misincorporation with a significant ability to promote G:T and T:G mismatches. The frequency of misincorporation for these two mismatches is similar to that exhibited by archaeal and prokaryotic homologs. Overall, our data show that MsDpo4 has the capacity to facilitate transition mutations and can potentially impart plasticity to the genome.


2003 ◽  
Vol 23 (14) ◽  
pp. 5107-5112 ◽  
Author(s):  
M. Todd Washington ◽  
Sandra A. Helquist ◽  
Eric T. Kool ◽  
Louise Prakash ◽  
Satya Prakash

ABSTRACT Classical high-fidelity DNA polymerases discriminate between the correct and incorrect nucleotides by using geometric constraints imposed by the tight fit of the active site with the incipient base pair. Consequently, Watson-Crick (W-C) hydrogen bonding between the bases is not required for the efficiency and accuracy of DNA synthesis by these polymerases. DNA polymerase η (Polη) is a low-fidelity enzyme able to replicate through DNA lesions. Using difluorotoluene, a nonpolar isosteric analog of thymine unable to form W-C hydrogen bonds with adenine, we found that the efficiency and accuracy of nucleotide incorporation by Polη are severely impaired. From these observations, we suggest that W-C hydrogen bonding is required for DNA synthesis by Polη; in this regard, Polη differs strikingly from classical high-fidelity DNA polymerases.


Sign in / Sign up

Export Citation Format

Share Document