scholarly journals Targeted Ablation of Plasma Membrane Ca2+-ATPase (PMCA) 1 and 4 Indicates a Major Housekeeping Function for PMCA1 and a Critical Role in Hyperactivated Sperm Motility and Male Fertility for PMCA4

2004 ◽  
Vol 279 (32) ◽  
pp. 33742-33750 ◽  
Author(s):  
Gbolahan W. Okunade ◽  
Marian L. Miller ◽  
Gail J. Pyne ◽  
Roy L. Sutliff ◽  
Kyle T. O'Connor ◽  
...  
2004 ◽  
Vol 279 (27) ◽  
pp. 28220-28226 ◽  
Author(s):  
Kai Schuh ◽  
Elizabeth J. Cartwright ◽  
Eriks Jankevics ◽  
Karin Bundschu ◽  
Jürgen Liebermann ◽  
...  

2021 ◽  
Vol 11 (8) ◽  
pp. 760
Author(s):  
Yu-Jia Wang ◽  
Eko Mugiyanto ◽  
Yun-Ting Peng ◽  
Wan-Chen Huang ◽  
Wan-Hsuan Chou ◽  
...  

Infertility is one of the important problems in the modern world. Male infertility is characterized by several clinical manifestations, including low sperm production (oligozoospermia), reduced sperm motility (asthenozoospermia), and abnormal sperm morphology (teratozoospermia). WDR4, known as Wuho, controls fertility in Drosophila. However, it is unclear whether WDR4 is associated with clinical manifestations of male fertility in human. Here, we attempted to determine the physiological functions of WDR4 gene. Two cohorts were applied to address this question. The first cohort was the general population from Taiwan Biobank. Genomic profiles from 68,948 individuals and 87 common physiological traits were applied for phenome-wide association studies (PheWAS). The second cohort comprised patients with male infertility from Wan Fang Hospital, Taipei Medical University. In total, 81 male participants were recruited for the genetic association study. Clinical records including gender, age, total testosterone, follicle-stimulating hormone (FSH), luteinizing hormone (LH), total sperm number, sperm motility, and sperm morphology were collected. In the first cohort, results from PheWAS exhibited no associations between WDR4 genetic variants and 87 common physiological traits. In the second cohort, a total of four tagging single-nucleotide polymorphisms (tSNPs) from WDR4 gene (rs2298666, rs465663, rs2248490, and rs3746939) were selected for genotyping. We found that SNP rs465663 solely associated with asthenozoospermia. Functional annotations through the GTEx portal revealed the correlation between TT or TC genotype and low expression of WDR4. Furthermore, we used mouse embryonic fibroblasts cells from mwdr4 heterozygous (+/‒) mice for functional validation by western blotting. Indeed, low expression of WDR4 contributed to ROS-induced DNA fragmentation. In conclusion, our results suggest a critical role of WDR4 gene variant as well as protein expression in asthenozoospermia.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Shin-ya Maruyama ◽  
Momoe Ito ◽  
Yuusuke Ikami ◽  
Yu Okitsu ◽  
Chizuru Ito ◽  
...  

Author(s):  
Ezzatollah Keyhani ◽  
Larry F. Lemanski ◽  
Sharon L. Lemanski

Energy for sperm motility is provided by both glycolytic and respiratory pathways. Mitochondria are involved in the latter pathway and conserve energy of substrate oxidation by coupling to phosphorylation. During spermatogenesis, the mitochondria undergo extensive transformation which in many species leads to the formation of a nebemkem. The nebemkem subsequently forms into a helix around the axial filament complex in the middle piece of spermatozoa.Immature spermatozoa of axolotls contain numerous small spherical mitochondria which are randomly distributed throughout the cytoplasm (Fig. 1). As maturation progresses, the mitochondria appear to migrate to the middle piece region where they become tightly packed to form a crystalline-like sheath. The cytoplasm in this region is no longer abundant (Fig. 2) and the plasma membrane is now closely apposed to the outside of the mitochondrial layer.


Oncogene ◽  
2021 ◽  
Author(s):  
Jiuna Zhang ◽  
Xiaoyu Jiang ◽  
Jie Yin ◽  
Shiying Dou ◽  
Xiaoli Xie ◽  
...  

AbstractRING finger proteins (RNFs) play a critical role in cancer initiation and progression. RNF141 is a member of RNFs family; however, its clinical significance, roles, and mechanism in colorectal cancer (CRC) remain poorly understood. Here, we examined the expression of RNF141 in 64 pairs of CRC and adjacent normal tissues by real-time PCR, Western blot, and immunohistochemical analysis. We found that there was more expression of RNF141 in CRC tissue compared with its adjacent normal tissue and high RNF141 expression associated with T stage. In vivo and in vitro functional experiments were conducted and revealed the oncogenic role of RNF141 in CRC. RNF141 knockdown suppressed proliferation, arrested the cell cycle in the G1 phase, inhibited migration, invasion and HUVEC tube formation but promoted apoptosis, whereas RNF141 overexpression exerted the opposite effects in CRC cells. The subcutaneous xenograft models showed that RNF141 knockdown reduced tumor growth, but its overexpression promoted tumor growth. Mechanistically, liquid chromatography-tandem mass spectrometry indicated RNF141 interacted with KRAS, which was confirmed by Co-immunoprecipitation, Immunofluorescence assay. Further analysis with bimolecular fluorescence complementation (BiFC) and Glutathione-S-transferase (GST) pull-down assays showed that RNF141 could directly bind to KRAS. Importantly, the upregulation of RNF141 increased GTP-bound KRAS, but its knockdown resulted in a reduction accordingly. Next, we demonstrated that RNF141 induced KRAS activation via increasing its enrichment on the plasma membrane not altering total KRAS expression, which was facilitated by the interaction with LYPLA1. Moreover, KRAS silencing partially abolished the effect of RNF141 on cell proliferation and apoptosis. In addition, our findings presented that RNF141 functioned as an oncogene by upregulating KRAS activity in a manner of promoting KRAS enrichment on the plasma membrane in CRC.


Endocrinology ◽  
2011 ◽  
Vol 152 (12) ◽  
pp. 5041-5052 ◽  
Author(s):  
Sophea Heng ◽  
Ana Cervero ◽  
Carlos Simon ◽  
Andrew N. Stephens ◽  
Ying Li ◽  
...  

Establishment of endometrial receptivity is vital for successful embryo implantation; its failure causes infertility. Epithelial receptivity acquisition involves dramatic structural changes in the plasma membrane and cytoskeleton. Proprotein convertase 5/6 (PC6), a serine protease of the proprotein convertase (PC) family, is up-regulated in the human endometrium specifically at the time of epithelial receptivity and stromal cell decidualization. PC6 is the only PC member tightly regulated in this manner. The current study addressed the importance and mechanisms of PC6 action in regulating receptivity in women. PC6 was dysregulated in the endometrial epithelium during the window of implantation in infertile women of three demographically different cohorts. Its critical role in receptivity was evidenced by a significant reduction in mouse blastocyst attachment of endometrial epithelial cells after PC6 knockdown by small interfering RNA. Using a proteomic approach, we discovered that PC6 cleaved the key scaffolding protein, ezrin-radixin-moesin binding phosphoprotein 50 (EBP50), thereby profoundly affecting its interaction with binding protein ezrin (a key protein bridging actin filaments and plasma membrane), EBP50/ezrin cellular localization, and cytoskeleton-membrane connections. We further validated this novel PC6 regulation of receptivity in human endometrium in vivo in fertile vs. infertile patients. These results strongly indicate that PC6 plays a key role in regulating fundamental cellular remodeling processes, such as plasma membrane transformation and membrane-cytoskeletal interface reorganization. PC6 cleavage of a crucial scaffolding protein EBP50, thereby profoundly regulating membrane-cytoskeletal reorganization, greatly extends the current knowledge of PC biology and provides substantial new mechanistic insight into the fields of reproduction, basic cellular biology, and PC biochemistry.


2020 ◽  
Vol 5 (2) ◽  
pp. 1-8
Author(s):  
Eraldo L Zanella

The freezing/thawing process of spermatozoa can cause cellular damage to the male gamete, decreasing the fertilization potential due to the increase in the production of reactive oxygen species (ROS). Melatonin is a potent endogenous antioxidant that protects the body against the damage caused by ROS. This study has evaluated different melatonin concentrations on the sperm viability of cryopreserved semen of Crioulo stallions. For that, three ejaculates were collected from five stallions diluted in a commercial extender followed by centrifugation and resuspension in a commercial freezing extender supplemented with 0; 1.25; 2.5. 5mM of Melatonin before the cryopreservation process. After thawing, the evaluation was performed assessing motility and flow cytometry evaluations: the plasma membrane integrity (PI), the integrity of the acrosomal membrane (FITC-PNA), mitochondrial membrane potential (JC1), and ROS generation (DCF-DA). Our results showed that sperm motility in the group without Melatonin and the 1.25mM group did not show the difference; however, the groups 2.5mM and 5mM presented a reduction in sperm motility. The 1.25 mM concentration was able to protect the plasma membrane during the cryopreservation process, in addition to showing a significant reduction in the production of ROS and increasing the percentage of sperm with integral acrosome. It can also be seen that high concentrations of Melatonin did not show beneficial effects. In conclusion, the addition of 1.25 mM of the Melatonin in Crioulo sperm cells showed to have a protective effect on the sperm cell during cryopreservation.


Sign in / Sign up

Export Citation Format

Share Document