scholarly journals Increased CCAAT Enhancer-binding Protein ϵ (C/EBPϵ) Expression and Premature Apoptosis in Myeloid Cells Expressing Gfi-1 N382S Mutant Associated with Severe Congenital Neutropenia

2006 ◽  
Vol 281 (16) ◽  
pp. 10745-10751 ◽  
Author(s):  
Dazhong Zhuang ◽  
Yaling Qiu ◽  
Scott C. Kogan ◽  
Fan Dong
Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 8-8
Author(s):  
Jun Xia ◽  
Laurence A. Boxer ◽  
Daniel C. Link

Abstract Abstract 8 Severe congenital neutropenia (SCN) is a bone marrow failure syndrome characterized by an isolated block in granulocytic differentiation at the promyelocyte/myelocyte stage, and a marked propensity to develop acute myeloid leukemia. Approximately 50% of cases of SCN are due to heterozygous mutations of ELANE, encoding neutrophil elastase (NE). We and others previously published data supporting a model in which the shared feature of the many different ELANE mutations is a propensity to misfold. Accumulation of misfolded mutant NE induces endoplasmic reticulum (ER) stress and triggers the unfolded protein response (UPR). However, the mechanisms by which UPR activation disrupts granulocytic differentiation are not clear. We previously presented results of RNA expression profiling of promyelocytes sorted from patients with SCN (n = 9), healthy donors (n = 5), healthy donors treated with G-CSF (n = 4), or patients with Shwachman Diamond syndrome (n = 5), an unrelated congenital neutropenia syndrome. A transcriptional signature consistent with UPR activation was observed only in SCN promyelocytes. Here we report, based on an unbiased analysis of the profiling data, that one of the most dysregulated genes in SCN promyelocytes is CCAAT/enhancer binding protein gamma (CEBPG). CEBPG is a member of the CCAAT/enhancer binding protein family that includes CEBP/alpha (CEBPA), which plays an obligatory role in granulocytic differentiation. Of note, Skokowa and colleagues previously reported reduced CEBPA expression in myeloid cells from patients with SCN (Nat Med 12:191, 2006). CEPBG is known to heterodimerize with CEBPA and inhibits its transcriptional activation of target genes. Based on these data, we hypothesize that UPR-induced expression of CEBPG may contribute to the block in granulocytic differentiation in SCN through antagonism of CEBPA. We first asked whether UPR activation directly induces CEBPG mRNA expression. Bone marrow from healthy donors was treated with a variety of UPR inducers (tunicamycin, thapsigargin, or dithiothreitol) for 24 hours, and real time PCR performed on sorted promyelocytes (CD16low, CD15+ CD14− CD9e− cells) was performed. CEBPG mRNA expression was induced 2–5 fold compared with untreated cells. Of note, no difference in CEBPA mRNA expression was observed after UPR activation. However, though confirmation is required, immunoblotting of CD15+ myeloid cells after UPR activation showed decreased expression of CEBPA protein, which is consistent with a prior report suggesting that UPR activation inhibits CEBPA translation (J Cell Mol Med. 14:1509–19). Thus, UPR activation may inhibit CEBPA function through two mechanisms: increased CEBPG antagonism and decreased CEBPA translation. We next asked whether enforced expression of CEBPG was sufficient to inhibit granulocytic differentiation. CD34+ hematopoietic progenitors from healthy donors were transduced with lentivirus expressing CEBPG or vector alone; the lentivirus also expressed green fluorescent protein (GFP) to track transduced cells. Transduced (GFP+) cells were sorted and then cultured on irradiated stromal cells in the presence of G-CSF for two weeks to induce granulocytic differentiation; CEBPG mRNA expression was increased approximately 20-fold compared to control transduced cells. Enforced expression of CEBPG resulted in a significant suppression of mature neutrophil production. The percentage of mature neutrophils in CEBPG-overexpressing cultures was 19.2 ± 0.04% compared with 42.2 ± 0.7% for vector-alone transduced cultures (P = 0.02, n =4). Together, these data suggest a model in which UPR activation inhibits granulocytic differentiation, at least in part, by inducing CEBPG expression and antagonizing CEBPA function. Disclosures: Boxer: Amgen: Equity Ownership; Alexion: Speakers Bureau; NIH: Research Funding; Up to Date: Patents & Royalties.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3577-3577
Author(s):  
Matthew Silver ◽  
Nirmalee Abayasekara ◽  
Dylan Perry ◽  
Hong Sun ◽  
Nancy Berliner ◽  
...  

Abstract CCAAT enhancer binding protein alpha (C/EBPα) is the founding member of a family of basic region/leucine zipper (bzip) transcription factors and has been shown to be a master regulator of granulopoiesis It is expressed at high levels throughout myeloid differentiation and has been shown to bind to the promoters of multiple myeloid- specific gene promoters at different stages of myeloid maturation. Profound hematopoietic abnormalities have been reported for mice nullizygous for including a selective early block in the differentiation of C/EBPα, granulocytes. Mutations in C/EBPα have been demonstrated in a subset of patients with AML presenting with a normal karyotype. These mutations can result in the expression of a 30kD dominant negative C/EBPα isoform which contributes to loss of C/EBPα function. We have sought to understand the molecular basis for this observation. We and others have demonstrated that C/EBPα is post-translationally modified by small ubiquitin-related modifier (SUMO) at a lysine residue (K159) that lies within a region of the C/EBPα protein that can negatively affect transcriptional activity. We have demonstrated that the levels of sumoylated p42C/EBPα decrease upon normal neutrophil maturation and that transactivation of the myeloid-specific lactoferrin (LF) promoter reporter is significantly enhanced by a p42 sumoylation mutant of C/EBPα (K159A). Additionally, in oligonucleotide pull down assays, we show that sumoylated p42C/EBPα binds to the C/EBP site in the LF promoter in immature myeloid cells (which do not express LF) while loss binding and LF of sumoylation correlates with loss of p42C/EBPα expression in more mature cells. Based on these observations we is associated with the negative conclude that sumoylated p42C/EBPα regulation of LF in early myeloid cells. We further demonstrate that sumoylated p42C/EBPα remains bound to the LF promoter following ATRA induction of the leukemic NB4 cells, which do not express LF despite induction of morphologic maturation. Based on these observations we conclude that during normal myeloid differentiation, sumoylated p42C/EBPα is associated with the negative regulation of LF in early myeloid cells, and that LF expression upon maturation is associated with loss of binding of sumoylated p42 C/EBPα In leukemic cells induced toward mature neutrophils, sumoylated p42C/EBPα remains bound to the LF promoter, contributing to the lack of expression of LF in these cells. We show in addition, that p30 C/EBPα can also be sumoylated. In transactivation assays, however, sumoylated p42C/EBPα suppresses LF promoter activity more efficiently than p30C/EBPα in 293 cells. In order to identify differential protein binding partners of p30 and p42C/EBPα that could account for the differential transcriptional activity of the two isoforms, we have used a one step purification method that allows isolation of biotinylated C/EBPα p30 and p42- containing complexes using magnetic-streptavidin beads. The K562 myelomonocytic cell line stably expressing a biotin ligase (BirA) plasmid was transfected with p30C/EBPα or p42C/EBPα each containing a 23 amino acid tag at the N-terminus that allows for in vivo biotinylation. Proteins complexed with the two C/EBP isofoms have been isolated and are currently being identified by LC- MS MS analysis. Their differential association with the two isofoms of C/EBPα will be confimed by coimmunoprecipitation assays in normal myeloid and in leukemic cells. The identification of differentially bound proteins to p30 and p42 C/EBPα may identify molecular targets for future drug development.


Blood ◽  
2001 ◽  
Vol 97 (9) ◽  
pp. 2611-2617 ◽  
Author(s):  
Susan E. Lyons ◽  
Bixiong C. Shue ◽  
Andrew C. Oates ◽  
Leonard I. Zon ◽  
P. Paul Liu

Abstract The CCAAT/enhancer-binding protein (C/EBP) family consists of transcription factors essential for hematopoiesis. The defining feature of the C/EBPs is a highly conserved carboxy-terminal bZIP domain that is necessary and sufficient for dimerization and DNA binding, whereas their amino-terminal domains are unique. This study reports a novelc/ebp gene (c/ebp1) from zebrafish that encodes a protein homologous to mammalian C/EBPs within the bZIP domain, but with an amino terminus lacking homology to any C/EBP or to any known sequence. In zebrafish embryos, c/ebp1 expression was initially observed in cells within the yolk sac circulation valley at approximately the 16-to 18-somite stage, and at 24 hours postfertilization (hpf), also in circulating cells. Mostc/ebp1+cells also expressed a known early macrophage marker, leukocyte-specific plastin (l-plastin). Expression of both markers was lost in cloche, a mutant affecting hematopoiesis at the level of the hemangioblast. Expression of both markers was retained in m683 andspadetail, mutants affecting erythropoiesis, but not myelopoiesis. Further, c/ebp1 expression was lost in a mutant with defective myelopoiesis, but intact erythropoiesis. These data suggest that c/ebp1 is expressed exclusively in myeloid cells. In electrophoretic mobility shift assays, c/ebp1 was able to bind a C/EBP consensus DNA site. Further, a chimeric protein containing the amino-terminal domain of c/ebp1 fused to the DNA-binding domain of GAL4 induced a GAL4 reporter 4000-fold in NIH3T3 cells. These results suggest that c/ebp1 is a novel member of the C/EBP family that may function as a potent transcriptional activator in myeloid cells.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1231-1231
Author(s):  
Arati Khanna-Gupta ◽  
Matthew Silver ◽  
William Hankey ◽  
Hong Sun ◽  
Nancy Berliner

Abstract CCAAT enhancer binding protein alpha (C/EBPα) is the founding member of a family of basic region/leucine zipper (bzip) transcription factors and has been shown to be a master regulator of granulopoiesis It is expressed at high levels throughout myeloid differentiation and has been shown to bind to the promoters of multiple myeloid- specific genes at different stages of myeloid maturation. Profound hematopoietic abnormalities have been reported for mice nullizygous for C/EBPα, including a selective early block in the differentiation of granulocytes. Recently mutations in C/EBPα have been demonstrated in a subset of patients with AML presenting normal karyotypes. These mutations can result in the expression of a 30kD dominant negative C/EBPα isoform which contributes to loss of C/EBPα function. Since the molecular basis for this observation remains unknown, a complete understanding of the regulation of this key transcription factor during myelopoiesis is critical. C/EBPα was recently shown to be post-translationally modified by small ubiquitin-related modifier (SUMO) at a lysine residue (K159) which lies within a region of the C/EBPα protein that can negatively affect transcriptional activity. Sumoylation at K159 in the C/EBPα protein is thought to prevent association of the SWI/SNF chromatin remodeling complex with C/EBPα, thereby hampering transactivation. In order to demonstrate the role of sumoylation in mediating C/EBPα activity, we examined the effect of both the full length (p42) and the dominant negative (p30) isoforms of the C/EBPα protein on myeloid gene expression. We demonstrate that the levels of sumoylated p42C/EBPα decrease upon normal neutrophil maturation, and that transactivation of the myeloid-specific lactoferrin promoter reporter is significantly enhanced by a p42 sumoylation mutant of C/EBPα (K159A). Additionally, in oligonucleotide pull down assays, we show that sumoylated p42C/EBPα binds to the C/EBP site in the LF promoter in immature myeloid cells while loss of sumoylation correlates with loss of p42C/EBPα binding and LF expression in more mature cells. Based on these observations we conclude that sumoylated p42C/EBPα is associated with the negative regulation of LF in early myeloid cells. We show in addition, that p30 C/EBPα can also be sumoylated. In transactivation assays, however, sumoylated p42C/EBPα suppresses LF promoter activity more efficiently than p30C/EBPα in 293 cells. We are now in the process of confirming this finding in leukemic cell lines. This observation leads us to hypothesize that the differential transactivation potential of sumoylated p30 versus the p42 C/EBPα proteins may contribute, in part, to the aberrant activity of C/EBPα in acute leukemias.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Naglaa M. Hassan ◽  
Fadwa Said ◽  
Roxan E. Shafik ◽  
Mona S. Abdellateif

Abstract Background Acute myeloid leukemia (AML) is a heterogeneous malignant disease characterized by accumulation of different types of mutations commonly the CCAAT/enhancer binding protein-alpha (CEBPA). However, the dysregulations of CEBPA expression in AML is still a debatable issue. The aim of the current study was to assess CEBPA gene expression in bone marrow (BM) aspiration specimens of 91 AML patients, compared to 20 control donors of bone marrow transplantation (BMT), using RT-PCR. Data were correlated with patients’ clinico-pathological features, response to treatment, progression-free survival (PFS), and overall survival (OS) rates. Results There was overexpression of CEBPA gene in AML patients compared to normal control [1.7 (0.04–25.6) versus 0.17 (0–4.78), respectively, P < 0.001]. Upregulation of CEBPA expression associated significantly with increased BM hypercellularity, total leucocyte counts, peripheral blood blast cell count, and poor PFS (P < 0.001, 0.002, 0.001, and 0.013, respectively). There was no significant association between CEBPA expression and any other relevant clinico-pathological features or OS rates (P = 0.610) of the patients. ROC analysis for biological relevance of CEBPA expression with AML showed that sensitivity and specificity of CEBPA expression at a cut-off value of 0.28 are 92.3% and 78.6%, respectively (P < 0.001). All patients who had CEBPA overexpression and mutant FLT3 showed BM hypercellularity, adverse cytogenetic risk, increased TLC, and PB blast cells count (P = 0.007, P < 0.001, 0.016, and 0.002, respectively). Conclusion CEBPA overexpression could be used as a genetic biological marker for AML diagnosis, as well as a poor prognostic factor for disease progression. It has no impact on OS rates of the patients.


Sign in / Sign up

Export Citation Format

Share Document