scholarly journals A catalytic domain variant of mitofusin requiring a wildtype paralog for function uncouples mitochondrial outer-membrane tethering and fusion

2019 ◽  
Vol 294 (20) ◽  
pp. 8001-8014 ◽  
Author(s):  
Emily A. Engelhart ◽  
Suzanne Hoppins

Mitofusins (Mfns) are dynamin-related GTPases that mediate mitochondrial outer-membrane fusion, a process that is required for mitochondrial and cellular health. In Mfn1 and Mfn2 paralogs, a conserved phenylalanine (Phe-202 (Mfn1) and Phe-223 (Mfn2)) located in the GTPase domain on a conserved β strand is part of an aromatic network in the core of this domain. To gain insight into the poorly understood mechanism of Mfn-mediated membrane fusion, here we characterize a Mitofusin mutant variant etiologically linked to Charcot–Marie–Tooth syndrome. From analysis of mitochondrial structure in cells and mitochondrial fusion in vitro, we found that conversion of Phe-202 to leucine in either Mfn1 or Mfn2 diminishes the fusion activity of heterotypic complexes with both Mfn1 and Mfn2 and abolishes fusion activity of homotypic complexes. Using coimmunoprecipitation and native gel analysis, we further dissect the steps of mitochondrial fusion and demonstrate that the mutant variant has normal tethering activity but impaired higher-order nucleotide-dependent assembly. The defective coupling of tethering to membrane fusion observed here suggests that nucleotide-dependent self-assembly of Mitofusin is required after tethering to promote membrane fusion.

2016 ◽  
Vol 215 (5) ◽  
pp. 597-598 ◽  
Author(s):  
Luke E. Formosa ◽  
Michael T. Ryan

In this issue, Qi et al. (2016. J. Cell Biol. https://doi.org/10.1083/jcb.201609019) provide structural insights into the mechanisms of mitochondrial outer membrane fusion by investigating the structure of mitofusin 1 (MFN1). This work proposes a new model to explain the important and elusive process of MFN-mediated mitochondrial fusion.


2011 ◽  
Vol 124 (7) ◽  
pp. 1126-1135 ◽  
Author(s):  
F. Anton ◽  
J. M. Fres ◽  
A. Schauss ◽  
B. Pinson ◽  
G. J. K. Praefcke ◽  
...  

2009 ◽  
Vol 20 (8) ◽  
pp. 2276-2285 ◽  
Author(s):  
Blanca Schafer ◽  
Joel Quispe ◽  
Vineet Choudhary ◽  
Jerry E. Chipuk ◽  
Teddy G. Ajero ◽  
...  

Mitochondrial outer membrane permeabilization (MOMP) is a critical step in apoptosis and is regulated by Bcl-2 family proteins. In vitro systems using cardiolipin-containing liposomes have demonstrated the key features of MOMP induced by Bax and cleaved Bid; however, the nature of the “pores” and how they are formed remain obscure. We found that mitochondrial outer membranes contained very little cardiolipin, far less than that required for liposome permeabilization, despite their responsiveness to Bcl-2 family proteins. Strikingly, the incorporation of isolated mitochondrial outer membrane (MOM) proteins into liposomes lacking cardiolipin conferred responsiveness to cleaved Bid and Bax. Cardiolipin dependence was observed only when permeabilization was induced with cleaved Bid but not with Bid or Bim BH3 peptide or oligomerized Bax. Therefore, we conclude that MOM proteins specifically assist cleaved Bid in Bax-mediated permeabilization. Cryoelectron microscopy of cardiolipin-liposomes revealed that cleaved Bid and Bax produced large round holes with diameters of 25–100 nm, suggestive of lipidic pores. In sum, we propose that activated Bax induces lipidic pore formation and that MOM proteins assist cleaved Bid in this process in the absence of cardiolipin.


2018 ◽  
Vol 475 (23) ◽  
pp. 3903-3915 ◽  
Author(s):  
William A. Cramer ◽  
Onkar Sharma ◽  
S.D. Zakharov

Current problems in the understanding of colicin import across the Escherichia coli outer membrane (OM), involving a range of cytotoxic mechanisms, are discussed: (I) Crystal structure analysis of colicin E3 (RNAase) with bound OM vitamin B12 receptor, BtuB, and of the N-terminal translocation (T) domain of E3 and E9 (DNAase) inserted into the OM OmpF porin, provide details of the initial interaction of the colicin central receptor (R)- and N-terminal T-domain with OM receptors/translocators. (II) Features of the translocon include: (a) high-affinity (Kd ≈ 10−9 M) binding of the E3 receptor-binding R-domain E3 to BtuB; (b) insertion of disordered colicin N-terminal domain into the OmpF trimer; (c) binding of the N-terminus, documented for colicin E9, to the TolB protein on the periplasmic side of OmpF. Reinsertion of the colicin N-terminus into the second of the three pores in OmpF implies a colicin anchor site on the periplasmic side of OmpF. (III) Studies on the insertion of nuclease colicins into the cytoplasmic compartment imply that translocation proceeds via the C-terminal catalytic domain, proposed here to insert through the unoccupied third pore of the OmpF trimer, consistent with in vitro occlusion of OmpF channels by the isolated E3 C-terminal domain. (IV) Discussion of channel-forming colicins focuses mainly on colicin E1 for which BtuB is receptor and the OM TolC protein the proposed translocator. The ability of TolC, part of a multidrug efflux pump, for which there is no precedent for an import function, to provide a trans-periplasmic import pathway for colicin E1, is questioned on the basis of an unfavorable hairpin conformation of colicin N-terminal peptides inserted into TolC.


2006 ◽  
Vol 173 (5) ◽  
pp. 645-650 ◽  
Author(s):  
Mafalda Escobar-Henriques ◽  
Benedikt Westermann ◽  
Thomas Langer

Mitochondrial morphology depends on balanced fusion and fission events. A central component of the mitochondrial fusion apparatus is the conserved GTPase Fzo1 in the outer membrane of mitochondria. Mdm30, an F-box protein required for mitochondrial fusion in vegetatively growing cells, affects the cellular Fzo1 concentration in an unknown manner. We demonstrate that mitochondrial fusion requires a tight control of Fzo1 levels, which is ensured by Fzo1 turnover. Mdm30 binds to Fzo1 and, dependent on its F-box, mediates proteolysis of Fzo1. Unexpectedly, degradation occurs along a novel proteolytic pathway not involving ubiquitylation, Skp1–Cdc53–F-box (SCF) E3 ubiquitin ligase complexes, or 26S proteasomes, indicating a novel function of an F-box protein. This contrasts to the ubiquitin- and proteasome-dependent turnover of Fzo1 in α-factor–arrested yeast cells. Our results therefore reveal not only a critical role of Fzo1 degradation for mitochondrial fusion in vegetatively growing cells but also the existence of two distinct proteolytic pathways for the turnover of mitochondrial outer membrane proteins.


2000 ◽  
Vol 151 (2) ◽  
pp. 341-352 ◽  
Author(s):  
Edith D. Wong ◽  
Jennifer A. Wagner ◽  
Steven W. Gorsich ◽  
J. Michael McCaffery ◽  
Janet M. Shaw ◽  
...  

Mutations in the dynamin-related GTPase, Mgm1p, have been shown to cause mitochondrial aggregation and mitochondrial DNA loss in Saccharomyces cerevisiae cells, but Mgm1p's exact role in mitochondrial maintenance is unclear. To study the primary function of MGM1, we characterized new temperature sensitive MGM1 alleles. Examination of mitochondrial morphology in mgm1 cells indicates that fragmentation of mitochondrial reticuli is the primary phenotype associated with loss of MGM1 function, with secondary aggregation of mitochondrial fragments. This mgm1 phenotype is identical to that observed in cells with a conditional mutation in FZO1, which encodes a transmembrane GTPase required for mitochondrial fusion, raising the possibility that Mgm1p is also required for fusion. Consistent with this idea, mitochondrial fusion is blocked in mgm1 cells during mating, and deletion of DNM1, which encodes a dynamin-related GTPase required for mitochondrial fission, blocks mitochondrial fragmentation in mgm1 cells. However, in contrast to fzo1 cells, deletion of DNM1 in mgm1 cells restores mitochondrial fusion during mating. This last observation indicates that despite the phenotypic similarities observed between mgm1 and fzo1 cells, MGM1 does not play a direct role in mitochondrial fusion. Although Mgm1p was recently reported to localize to the mitochondrial outer membrane, our studies indicate that Mgm1p is localized to the mitochondrial intermembrane space. Based on our localization data and Mgm1p's structural homology to dynamin, we postulate that it functions in inner membrane remodeling events. In this context, the observed mgm1 phenotypes suggest that inner and outer membrane fission is coupled and that loss of MGM1 function may stimulate Dnm1p-dependent outer membrane fission, resulting in the formation of mitochondrial fragments that are structurally incompetent for fusion.


2003 ◽  
Vol 14 (6) ◽  
pp. 2342-2356 ◽  
Author(s):  
Hiromi Sesaki ◽  
Sheryl M. Southard ◽  
Michael P. Yaffe ◽  
Robert E. Jensen

In Saccharomyces cerevisiae, mitochondrial fusion requires at least two outer membrane proteins, Fzo1p and Ugo1p. We provide direct evidence that the dynamin-related Mgm1 protein is also required for mitochondrial fusion. Like fzo1 and ugo1 mutants, cells disrupted for the MGM1 gene contain numerous mitochondrial fragments instead of the few long, tubular organelles seen in wild-type cells. Fragmentation of mitochondria in mgm1 mutants is rescued by disrupting DNM1, a gene required for mitochondrial division. In zygotes formed by mating mgm1 mutants, mitochondria do not fuse and mix their contents. Introducing mutations in the GTPase domain of Mgm1p completely block mitochondrial fusion. Furthermore, we show that mgm1 mutants fail to fuse both their mitochondrial outer and inner membranes. Electron microscopy demonstrates that although mgm1 mutants display aberrant mitochondrial inner membrane cristae, mgm1 dnm1 double mutants restore normal inner membrane structures. However, mgm1 dnm1 mutants remain defective in mitochondrial fusion, indicating that mitochondrial fusion requires Mgm1p regardless of the morphology of mitochondria. Finally, we find that Mgm1p, Fzo1p, and Ugo1p physically interact in the mitochondrial outer membrane. Our results raise the possibility that Mgm1p regulates fusion of the mitochondrial outer membrane through its interactions with Fzo1p and Ugo1p.


2016 ◽  
Vol 129 (5) ◽  
pp. 994-1002 ◽  
Author(s):  
Cuilin Zhang ◽  
Zhun Shi ◽  
Lingzhi Zhang ◽  
Zehua Zhou ◽  
Xiaoyuan Zheng ◽  
...  

2000 ◽  
Vol 349 (2) ◽  
pp. 611-621 ◽  
Author(s):  
Ling LAN ◽  
Sandra ISENMANN ◽  
Binks W. WATTENBERG

A distinct class of proteins contain a C-terminal membrane anchor and a cytoplasmic functional domain. A subset of these proteins is targeted to the mitochondrial outer membrane. Here, to probe for the involvement of a saturable targeting mechanism for this class of proteins, and to elucidate the roles of chaperone proteins and ATP, we have utilized an in vitro targeting system consisting of in vitro-synthesized proteins and isolated mitochondria. To establish the specificity of targeting we have used a closely related protein pair. VAMP-1A and VAMP-1B are splice variants of the vesicle-associated membrane protein/synaptobrevin-1 (VAMP-1) gene. In intact cells VAMP-1B is targeted to mitochondria whereas VAMP-1A is targeted to membranes of the secretory pathway, yet these isoforms differ by only five amino acids at the extreme C-terminus. Here we demonstrate that, in vitro, VAMP-1B is imported into both intact mitochondria and mitochondrial outer-membrane vesicles with a 15-fold greater efficiency than VAMP-1A. We generated and purified bacterially expressed fusion proteins consisting of the C-terminal two-thirds of VAMP-1A or -1B proteins fused to glutathione S-transferase (GST). Using these fusion proteins we demonstrate that protein targeting and insertion is saturable and specific for the VAMP-1B membrane anchor. To elucidate the role of cytosolic chaperones on VAMP-1B targeting, we also used the purified, Escherichia coli-derived fusion proteins. 33P-Labelled GST-VAMP-1B61-116, but not GST-VAMP-1A61-118, was efficiently targeted to mitochondria in a chaperone-free system. Thus the information required for targeting is contained within the targeted protein itself and not the chaperone or a chaperone-protein complex, although chaperones may be required to maintain a transport-competent conformation. Moreover, ATP was required for transport only in the presence of cytosolic chaperone proteins. Therefore the ATP requirement of transport appears to reflect the participation of chaperones and not any other ATP-dependent step. These data demonstrate that targeting of C-terminally anchored proteins to mitochondria is sequence specific and mediated by a saturable mechanism. Neither ATP nor chaperone proteins are strictly required for either specific targeting or membrane insertion.


2002 ◽  
Vol 76 (20) ◽  
pp. 10485-10496 ◽  
Author(s):  
Frédérique Weber-Lotfi ◽  
André Dietrich ◽  
Marcello Russo ◽  
Luisa Rubino

ABSTRACT Replication of the Carnation Italian ringspot virus genomic RNA in plant cells occurs in multivesicular bodies which develop from the mitochondrial outer membrane during infection. ORF1 in the viral genome encodes a 36-kDa protein, while ORF2 codes for the 95-kDa replicase by readthrough of the ORF1 stop codon. We have shown previously that the N-terminal part of ORF1 contains the information leading to vesiculation of mitochondria and that the 36-kDa protein localizes to mitochondria. Using infection, in vivo expression of green fluorescent protein fusions in plant and yeast cells, and in vitro mitochondrial integration assays, we demonstrate here that both the 36-kDa protein and the complete replicase are targeted to mitochondria and anchor to the outer membrane with the N terminus and C terminus on the cytosolic side. Analysis of deletion mutants indicated that the anchor sequence is likely to correspond approximately to amino acids 84 to 196, containing two transmembrane domains. No evidence for a matrix-targeting presequence was found, and the data suggest that membrane insertion of the viral proteins is mediated by an import receptor-independent signal-anchor mechanism relying on the two transmembrane segments and multiple recognition signals present in the N-terminal part of ORF1.


Sign in / Sign up

Export Citation Format

Share Document