scholarly journals NIMA-related kinase 9–mediated phosphorylation of the microtubule-associated LC3B protein at Thr-50 suppresses selective autophagy of p62/sequestosome 1

2019 ◽  
Vol 295 (5) ◽  
pp. 1240-1260 ◽  
Author(s):  
Birendra Kumar Shrestha ◽  
Mads Skytte Rasmussen ◽  
Yakubu Princely Abudu ◽  
Jack-Ansgar Bruun ◽  
Kenneth Bowitz Larsen ◽  
...  

Human ATG8 family proteins (ATG8s) are active in all steps of the macroautophagy pathway, and their lipidation is essential for autophagosome formation. Lipidated ATG8s anchored to the outer surface of the phagophore serve as scaffolds for binding of other core autophagy proteins and various effector proteins involved in trafficking or fusion events, whereas those at the inner surface are needed for assembly of selective autophagy substrates. Their scaffolding role depends on specific interactions between the LC3-interacting region (LIR) docking site (LDS) in ATG8s and LIR motifs in various interaction partners. LC3B is phosphorylated at Thr-50 within the LDS by serine/threonine kinase (STK) 3 and STK4. Here, we identified LIR motifs in STK3 and atypical protein kinase Cζ (PKCζ) and never in mitosis A (NIMA)-related kinase 9 (NEK9). All three kinases phosphorylated LC3B Thr-50 in vitro. A phospho-mimicking substitution of Thr-50 impaired binding of several LIR-containing proteins, such as ATG4B, FYVE, and coiled-coil domain-containing 1 (FYCO1), and autophagy cargo receptors p62/sequestosome 1 (SQSTM1) and neighbor of BRCA1 gene (NBR1). NEK9 knockdown or knockout enhanced degradation of the autophagy receptor and substrate p62. Of note, the suppression of p62 degradation was mediated by NEK9-mediated phosphorylation of LC3B Thr-50. Consistently, reconstitution of LC3B-KO cells with the phospho-mimicking T50E variant inhibited autophagic p62 degradation. PKCζ knockdown did not affect autophagic p62 degradation, whereas STK3/4 knockouts inhibited autophagic p62 degradation independently of LC3B Thr-50 phosphorylation. Our findings suggest that NEK9 suppresses LC3B-mediated autophagy of p62 by phosphorylating Thr-50 within the LDS of LC3B.

2020 ◽  
Vol 21 (20) ◽  
pp. 7769
Author(s):  
Michal Dibus ◽  
Jan Brábek ◽  
Daniel Rösel

Protein kinase N3 (PKN3) is a serine/threonine kinase implicated in tumor progression of multiple cancer types, however, its substrates and effector proteins still remain largely understudied. In the present work we aimed to identify novel PKN3 substrates in a phosphoproteomic screen using analog sensitive PKN3. Among the identified putative substrates we selected ARHGAP18, a protein from RhoGAP family, for validation of the screen and further study. We confirmed that PKN3 can phosphorylate ARHGAP18 in vitro and we also characterized the interaction of the two proteins, which is mediated via the N-terminal part of ARHGAP18. We present strong evidence that PKN3-ARHGAP18 interaction is increased upon ARHGAP18 phosphorylation and that the phosphorylation of ARHGAP18 by PKN3 enhances its GAP domain activity and contributes to negative regulation of active RhoA. Taken together, we identified new set of potential PKN3 substrates and revealed a new negative feedback regulatory mechanism of Rho signaling mediated by PKN3-induced ARHGAP18 activation.


2008 ◽  
Vol 415 (1) ◽  
pp. 27-33 ◽  
Author(s):  
Meghna Thakur ◽  
Pradip K. Chakraborti

Eukaryotic-type serine/threonine protein kinases in bacteria have been implicated in controlling a host of cellular activities. PknA is one of eleven such protein kinases from Mycobacterium tuberculosis which regulates morphological changes associated with cell division. In the present study we provide the evidence for the ability of PknA to transphosphorylate mMurD (mycobacterial UDP-N-acetylmuramoyl-L-alanine:D-glutamate-ligase), the enzyme involved in peptidoglycan biosynthesis. Its co-expression in Escherichia coli along with PknA resulted in phosphorylation of mMurD. Consistent with these observations, results of the solid-phase binding assays revealed a high-affinity in vitro binding between the two proteins. Furthermore, overexpression of m-murD in Mycobacterium smegmatis yielded a phosphorylated protein. The results of the present study therefore point towards the possibility of mMurD being a substrate of PknA.


2010 ◽  
Vol 432 (1) ◽  
pp. 77-87 ◽  
Author(s):  
Joanne Durgan ◽  
Peter J. Parker

Fbw7 (F-box WD40 protein 7) is a major tumour suppressor, which mediates the degradation of several potent oncogenes. PKC (protein kinase C) comprises a serine/threonine kinase family that can promote transformation when dysregulated. In the present study, we investigated the relationship between Fbw7 and PKC. Multiple members of the PKC superfamily interact with the substrate-binding domain of Fbw7. However, we find no evidence for Fbw7-mediated degradation of PKC. Instead, we demonstrate that Fbw7 is a novel substrate for PKC. Two residues within the isoform-specific N-terminus of Fbw7α are phosphorylated in a PKC-dependent manner, both in vitro and in mammalian cells (Ser10 and Ser18). Mutational analyses reveal that phosphorylation of Fbw7α at Ser10 can regulate its nuclear localization. Cancer-associated mutations in nearby residues (K11R and the addition of a proline residue at position 16) influence Fbw7α localization in a comparable manner, suggesting that mislocalization of this protein may be of pathological significance. Together these results provide evidence for both physical and functional interactions between the PKC and Fbw7 families, and yield insights into the isoform-specific regulation of Fbw7α.


Author(s):  
Adrian Rafael Murillo-de-Ozores ◽  
Alejandro Rodriguez-Gama ◽  
Hector Carbajal-Contreras ◽  
Gerardo Gamba ◽  
Maria Castaneda-Bueno

With No Lysine (K) kinase 4 (WNK4) belongs to a serine-threonine kinase family characterized by the atypical positioning of its catalytic lysine. Despite the fact that WNK4 has been found in many tissues, the majority of its study has revolved around its function in the kidney, specifically as a positive regulator of the thiazide-sensitive NaCl cotransporter (NCC) in the distal convoluted tubule (DCT) of the nephron. This is explained by the description of gain-of-function mutations in the gene encoding WNK4 that cause Familial Hyperkalemic Hypertension (FHHt). This disease is mainly driven by increased downstream activation of the Ste20-related Proline Alanine Rich Kinase (SPAK)/Oxidative Stress Responsive Kinase 1 (OSR1)-NCC pathway, which increases salt reabsorption in the DCT and indirectly impairs renal K+ secretion. Here, we review the large volume of information that has accumulated about different aspects of WNK4 function. We first review the knowledge on WNK4 structure and enumerate the functional domains and motifs that have been characterized. Then, we discuss WNK4 physiological functions based on the information obtained from in vitro studies and from a diverse set of genetically modified mouse models with altered WNK4 function. We then review in vitro and in vivo evidence on the different levels of regulation of WNK4. Finally, we go through the evidence that has suggested how different physiological conditions act through WNK4 to modulate NCC activity.


2021 ◽  
Author(s):  
Kazuya Matsuo ◽  
Sampreeth Thayyil ◽  
Mitsuyasu Kawaguchi ◽  
Hidehiko Nakagawa ◽  
Nobuyuki Tamaoki

Rho-associated coiled-coil-containing protein kinase (ROCK) is a serine-threonine kinase, whose inhibitors are useful for the regulation of actomyosin system. Here, we developed a photoswitchable ROCK inhibitor based on a phenylazothiazole...


2019 ◽  
Author(s):  
Zhen Wang ◽  
Junmei Kang ◽  
Shangang Jia ◽  
Tiejun Zhang ◽  
Zhihai Wu ◽  
...  

Abstract Background: Casein kinase 1 (CK1) family members are highly conserved serine/threonine kinase present in most eukaryotes with multiple biological functions. Arabidopsis MUT9-like kinases ( MLKs ) belong to a clade CK1 specific to the plant kingdom and have been implicated collectively in modulating flowering related processes. Three of the four MLKs ( MLK1/2/4 ) have been characterized, however, little is known about MLK3 , the most divergent MLKs. Results: We demonstrated that compared with wild type, mlk3 , a truncated MLK3 , flowered slightly early under long day conditions and ectopic expression of MLK3 rescued the morphological defects of mlk3 , indicating that MLK3 negatively regulates flowering. GA 3 application accelerated flowering of both wild type and mlk3 , suggesting that mlk3 had normal GA response. The recombinant MLK3-GFP was localized in the nucleus exclusively. In vitro kinase assay revealed that the nuclear protein MLK3 phosphorylated histone 3 at threonine 3 (H3T3ph). Mutation of a conserved catalytic residue (Lysine 175) abolished the kinase activity and resulted in failure to complement the early flowering phenotype of mlk3 . Interestingly, the global level of H3T3 phosphorylation in mlk3 did not differ significantly from wild type, suggesting the redundant roles of MLKs in flowering regulation. The transcriptomic analysis demonstrated that 425 genes significantly altered expression level in mlk3 relative to wild type. The mlk3 mlk4 double mutant generated by crossing mlk3 with mlk4 , a loss-of-function mutant of MLK4 showing late flowering, flowered between the two parental lines, suggesting that MLK3 played an antagonistic role to MLK4 in plant transition to flowering. Conclusions: A serine/threonine kinase encoding gene MLK3 is a casein kinase 1 specific to the plant species and represses flowering slightly. MLK3 located in nucleus catalyzes the phosphorylation of histone H3 at threonine 3 in vitro and an intact lysine residue (K175) is indispensible for the kinase activity. This study sheds new light on the delicate control of flowering by the plant-specific CK1 in Arabidopsis.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 942-942 ◽  
Author(s):  
Yingqiu Xie ◽  
Mehmet Burcu ◽  
Maria R. Baer

Abstract Abstract 942 Fms-like tyrosine kinase 3 (FLT3) internal tandem duplication (ITD) results in FLT3 constitutive activation and aberrant signaling in acute myeloid leukemia (AML) cells. FLT3-ITD is associated with adverse treatment outcome in AML, but FLT3 inhibitors have had limited therapeutic efficacy. The oncogenic serine/threonine kinase Pim-1 is upregulated in AML cells with FLT3-ITD. Pim-1 inhibitors are entering clinical trials, and we sought to characterize the role of Pim-1 and the effects of Pim-1 inhibition in FLT3-ITD cells. Wild-type (WT) FLT3 exists predominantly in a 150 kDa complex glycosylated form. In contrast, FLT3-ITD is partially retained in the endoplasmic reticulum (ER) as a misfolded 130 kDa underglycosylated, or high-mannose, species in association with the ER transmembrane chaperone calnexin. In addition, FLT3-ITD also associates with and is stabilized by the cytosolic chaperone heat shock protein (HSP) 90. FLT3-ITD activates signal transducer and activation of transcription (STAT) 5 and upregulates the STAT5 downstream target Pim-1. FLT3 contains a putative Pim-1 substrate consensus serine phosphorylation site, and we hypothesized that FLT3 might be a Pim-1 substrate. FLT3-ITD cell lines studied included MV4-11, MOLM-14 and transfected Ba/F3-ITD, and FLT3 WT cells included BV173, EOL-1 and transfected Ba/F3-WT. Pim-1 activity was measured by an in vitro kinase assay of BAD phosphorylation at serine 112, and Pim-1 expression, FLT3 expression, phosphorylation and co-immunoprecipitation, and STAT5 phosphorylation and expression by Western blot analysis. Pim-1 knockdown was accomplished by infection with lentivirus containing Pim-1 small hairpin RNA (shRNA) or non-target control, and Pim-1 kinase inhibition by incubation with the Pim-1-selective inhibitor quercetagetin. Pim-1 was found to directly interact with and serine-phosphorylate FLT3 from FLT3-ITD, but not FLT3-WT, cells in vitro. Inhibition of Pim-1 kinase disrupted binding of FLT3 to its chaperones calnexin and HSP90, and resulted in decreased expression and half-life of 130 kDa FLT3 and increased expression and half-life of 150 kDa FLT3. The decrease in expression and half-life of 130 kDa FLT3 was partially abrogated by co-incubation with the proteasome inhibitor MG132. Moreover, the increase in 150 Kda FLT3 was abrogated by co-incubation with the glycosylation inhibitor 2-deoxy-D-glucose. Thus Pim-1 maintains FLT3 as a 130 kDa species by enhancing its binding to its chaperones calnexin and HSP90, protecting it from proteasomal degradation and inhibiting its glycosylation to form 150 kDa FLT3. Inhibition of Pim-1 kinase activity also decreased phosphorylation of FLT3 at tyrosine 591, a docking site for binding of FLT3-ITD, but not FLT3-WT, to STAT5, and decreased both STAT5 phosphorylation and expression of Pim-1 itself. In contrast, Pim-1 inhibition had no effect on FLT3 tyrosine kinase activity nor on expression of Pim-2, another Pim kinase family member implicated in promoting survival of FLT3-ITD cells. Finally, the Pim-1 kinase inhibitor quercetagetin and the FLT3 inhibitor PKC412 had a synergistic effect in inducing apoptosis of Ba/F3-ITD cells: We conclude that Pim-1, which is transcriptionally upregulated through STAT5 in FLT3-ITD cells, serine-phosphorylates FLT3-ITD, thereby maintaining it in an underglycosylated form, and promotes STAT5 signaling, and that inhibition of Pim-1 and of FLT3 is synergistic in inducing apoptosis of FLT3-ITD cells. Thus Pim-1 inhibitors should inhibit aberrant signaling upstream as well as downstream of Pim-1 in FLT3-ITD cells, and have the potential to enhance the therapeutic efficacy of FLT3 inhibitors in patients with AML with FLT3-ITD Disclosures: No relevant conflicts of interest to declare.


2011 ◽  
Vol 192 (3) ◽  
pp. 525-540 ◽  
Author(s):  
David Cohen ◽  
Dawn Fernandez ◽  
Francisco Lázaro-Diéguez ◽  
Anne Müsch

The serine/threonine kinase Par1b promotes cell–cell adhesion and determines the polarity of the luminal domain in epithelial cells. In this study, we demonstrate that Par1b also regulates cell–extracellular matrix (ECM) signaling in kidney-derived Madin–Darby canine kidney (MDCK) cells and identified the rho–guanosine triphosphatase adaptor and scaffolding protein IRSp53 as a Par1b substrate involved in this pathway. Par1b overexpression inhibits basal lamina formation, cell spreading, focal adhesion, stress fiber formation, and compaction, whereas Par1b depletion has the opposite effect. IRSp53 depletion mimics Par1b overexpression on cell–ECM signaling and lumen polarity but had no effect on adherens junction formation. Par1b directly phosphorylates IRSp53 on S366 in cell lysates and stimulates phosphorylation on S453/3/5 via an indirect mechanism. A Par1b phosphorylation–deficient IRSp53 mutant but not the wild-type protein efficiently rescues both the cell spreading and the lumen polarity defects in Par1b MDCK cells. Our data suggest a model in which Par1b phosphorylation prevents recruitment of IRSp53 effector proteins to its Src homology domain 3 by promoting 14-3-3 binding in the vicinity of that domain.


2004 ◽  
Vol 72 (4) ◽  
pp. 2434-2437 ◽  
Author(s):  
Jose Echenique ◽  
Aras Kadioglu ◽  
Susana Romao ◽  
Peter W. Andrew ◽  
Marie-Claude Trombe

ABSTRACT In the Streptococcus pneumoniae genome, stkP, encoding a membrane-associated serine/threonine kinase, is not redundant (L. Novakova, S. Romao, J. Echenique, P. Branny, and M.-C. Trombe, unpublished results). The data presented here demonstrate that StkP belongs to the signaling network involved in competence triggering in vitro and lung infection and bloodstream invasion in vivo. In competence, functional StkP is required for activation of comCDE upstream of the autoregulated ring orchestrated by the competence-stimulating peptide. This is the first description of positive regulation of comCDE transcription in balance with its repression by CiaRH.


2016 ◽  
Vol 27 (7) ◽  
pp. 1069-1084 ◽  
Author(s):  
Jessica Konen ◽  
Scott Wilkinson ◽  
Byoungkoo Lee ◽  
Haian Fu ◽  
Wei Zhou ◽  
...  

LKB1 is a serine/threonine kinase and a commonly mutated gene in lung adenocarcinoma. The majority of LKB1 mutations are truncations that disrupt its kinase activity and remove its C-terminal domain (CTD). Because LKB1 inactivation drives cancer metastasis in mice and leads to aberrant cell invasion in vitro, we sought to determine how compromised LKB1 function affects lung cancer cell polarity and invasion. Using three-dimensional models, we show that LKB1 kinase activity is essential for focal adhesion kinase–mediated cell adhesion and subsequent collagen remodeling but not cell polarity. Instead, cell polarity is overseen by the kinase-independent function of its CTD and more specifically its farnesylation. This occurs through a mesenchymal-amoeboid morphological switch that signals through the Rho-GTPase RhoA. These data suggest that a combination of kinase-dependent and -independent defects by LKB1 inactivation creates a uniquely invasive cell with aberrant polarity and adhesion signaling that drives invasion into the microenvironment.


Sign in / Sign up

Export Citation Format

Share Document