scholarly journals Mesencephalic astrocyte–derived neurotrophic factor is an ER-resident chaperone that protects against reductive stress in the heart

2020 ◽  
Vol 295 (22) ◽  
pp. 7566-7583 ◽  
Author(s):  
Adrian Arrieta ◽  
Erik A. Blackwood ◽  
Winston T. Stauffer ◽  
Michelle Santo Domingo ◽  
Alina S. Bilal ◽  
...  

We have previously demonstrated that ischemia/reperfusion (I/R) impairs endoplasmic reticulum (ER)-based protein folding in the heart and thereby activates an unfolded protein response sensor and effector, activated transcription factor 6α (ATF6). ATF6 then induces mesencephalic astrocyte-derived neurotrophic factor (MANF), an ER-resident protein with no known structural homologs and unclear ER function. To determine MANF's function in the heart in vivo, here we developed a cardiomyocyte-specific MANF-knockdown mouse model. MANF knockdown increased cardiac damage after I/R, which was reversed by AAV9-mediated ectopic MANF expression. Mechanistically, MANF knockdown in cultured neonatal rat ventricular myocytes (NRVMs) impaired protein folding in the ER and cardiomyocyte viability during simulated I/R. However, this was not due to MANF-mediated protection from reactive oxygen species generated during reperfusion. Because I/R impairs oxygen-dependent ER protein disulfide formation and such impairment can be caused by reductive stress in the ER, we examined the effects of the reductive ER stressor DTT. MANF knockdown in NRVMs increased cell death from DTT-mediated reductive ER stress, but not from nonreductive ER stresses caused by thapsigargin-mediated ER Ca2+ depletion or tunicamycin-mediated inhibition of ER protein glycosylation. In vitro, recombinant MANF exhibited chaperone activity that depended on its conserved cysteine residues. Moreover, in cells, MANF bound to a model ER protein exhibiting improper disulfide bond formation during reductive ER stress but did not bind to this protein during nonreductive ER stress. We conclude that MANF is an ER chaperone that enhances protein folding and myocyte viability during reductive ER stress.

2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Adrian Arrieta ◽  
Erik A Blackwood ◽  
Winston T Stauffer ◽  
Michelle Santo Domingo ◽  
Amber N Pentoney ◽  
...  

Rationale: In cardiomyocytes, most secreted and membrane proteins are synthesized and folded in the sarcoplasmic/endoplasmic reticulum (SR/ER). We previously showed that during myocardial ischemia, decreased oxygen creates a reducing environment in the SR/ER, preventing protein disulfide isomerases (PDIs) from forming disulfide bonds in nascent proteins, causing ER stress, i.e. the toxic accumulation of unfolded proteins which contributes to cardiomyocyte death. In response to ER stress, the transcription factor, ATF6 induces chaperones that restore SR/ER protein folding. We found that ATF6 also induces mesencephalic astrocyte-derived neurotrophic factor (MANF), a recently identified protein of unknown function. MANF is structurally unique, so its function cannot be inferred from other proteins. Since MANF is induced by ATF6, is ER-localized, and contains a conserved redox-sensitive motif found in PDIs, we hypothesized that MANF is a redox-sensitive chaperone that optimizes cardiomyocyte viability during ischemia. Methods: The redox status of MANF during reductive ER stress and the ability of MANF to bind misfolded proteins during ischemia were assessed in neonatal rat ventricular myocytes (NRVM). The ability of recombinant MANF to suppress aggregation of misfolded proteins was examined in an in vitro chaperone assay. Finally, the effects of MANF loss-of-function in the ischemic heart, in vivo , were determined by generating a transgenic mouse model that expresses a cardiomyocyte-specific MANF-targeted microRNA. Results: In NRVM subjected to ER stress MANF was as sensitive to changes in ER redox status as the sentinel PDI, PDIA1. Moreover, MANF formed disulfide-linked complexes with misfolded proteins during ischemia-mediated ER stress. Under reducing conditions, recombinant MANF suppressed aggregation of model misfolded proteins, in vitro . MANF knockdown in the heart, in vivo , increased damage from myocardial infarction, and an AAV9-based gene therapy approach rescued the effects of MANF deficiency, in vivo. Conclusions: MANF is a redox-sensitive SR/ER-resident chaperone that is a critical contributor to SR/ER protein folding during the adaptive ER stress response and decreases tissue damage in the ischemic heart.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1446
Author(s):  
Tingting Jin ◽  
Jun Lin ◽  
Yingchao Gong ◽  
Xukun Bi ◽  
Shasha Hu ◽  
...  

Both calcium-independent phospholipase A2 beta (iPLA2β) and endoplasmic reticulum (ER) stress regulate important pathophysiological processes including inflammation, calcium homeostasis and apoptosis. However, their roles in ischemic heart disease are poorly understood. Here, we show that the expression of iPLA2β is increased during myocardial ischemia/reperfusion (I/R) injury, concomitant with the induction of ER stress and the upregulation of cell death. We further show that the levels of iPLA2β in serum collected from acute myocardial infarction (AMI) patients and in samples collected from both in vivo and in vitro I/R injury models are significantly elevated. Further, iPLA2β knockout mice and siRNA mediated iPLA2β knockdown are employed to evaluate the ER stress and cell apoptosis during I/R injury. Additionally, cell surface protein biotinylation and immunofluorescence assays are used to trace and locate iPLA2β. Our data demonstrate the increase of iPLA2β augments ER stress and enhances cardiomyocyte apoptosis during I/R injury in vitro and in vivo. Inhibition of iPLA2β ameliorates ER stress and decreases cell death. Mechanistically, iPLA2β promotes ER stress and apoptosis by translocating to ER upon myocardial I/R injury. Together, our study suggests iPLA2β contributes to ER stress-induced apoptosis during myocardial I/R injury, which may serve as a potential therapeutic target against ischemic heart disease.


2021 ◽  
Vol 12 ◽  
Author(s):  
Min-min Guo ◽  
Sheng-biao Qu ◽  
Hui-ling Lu ◽  
Wen-bo Wang ◽  
Mu-Liang He ◽  
...  

We have previously shown that biochanin A exhibits neuroprotective properties in the context of cerebral ischemia/reperfusion (I/R) injury. The mechanistic basis for such properties, however, remains poorly understood. This study was therefore designed to explore the manner whereby biochanin A controls endoplasmic reticulum (ER) stress, apoptosis, and inflammation within fetal rat primary cortical neurons in response to oxygen-glucose deprivation/reoxygenation (OGD/R) injury, and in a rat model of middle cerebral artery occlusion and reperfusion (MCAO/R) injury. For the OGD/R in vitro model system, cells were evaluated after a 2 h OGD following a 24 h reoxygenation period, whereas in vivo neurological deficits were evaluated following 2 h of ischemia and 24 h of reperfusion. The expression of proteins associated with apoptosis, ER stress (ERS), and p38 MAPK phosphorylation was evaluated in these samples. Rats treated with biochanin A exhibited reduced neurological deficits relative to control rats following MCAO/R injury. Additionally, GRP78 and CHOP levels rose following I/R modeling both in vitro and in vivo, whereas biochanin A treatment was associated with reductions in CHOP levels but further increases in GRP78 levels. In addition, OGD/R or MCAO/R were associated with markedly enhanced p38 MAPK phosphorylation that was alleviated by biochanin A treatment. Similarly, OGD/R or MCAO/R injury resulted in increases in caspase-3, caspase-12, and Bax levels as well as decreases in Bcl-2 levels, whereas biochanin A treatment was sufficient to reverse these phenotypes. Together, these findings thus demonstrate that biochanin A can alleviate cerebral I/R-induced damage at least in part via suppressing apoptosis, ER stress, and p38 MAPK signaling, thereby serving as a potent neuroprotective agent.


2017 ◽  
Vol 44 (3) ◽  
pp. 1011-1023 ◽  
Author(s):  
Hui Liu ◽  
Xibo Jing ◽  
Aiqiao Dong ◽  
Baobao Bai ◽  
Haiyan Wang

Background/Aims: Myocardial ischemia/reperfusion (I/R) injury remains a great challenge in clinical therapy. Tissue inhibitor of metalloproteinases 3 (TIMP3) plays a crucial role in heart physiological and pathophysiological processes. However, the effects of TIMP3 on I/R injury remain unknown. Methods: C57BL/6 mice were infected with TIMP3 adenovirus by local delivery in myocardium followed by I/R operation or doxorubicin treatment. Neonatal rat cardiomyocytes were pretreated with TIMP3 adenovirus prior to anoxia/reoxygenation (A/R) treatment in vitro. Histology, echocardiography, in vivo phenotypical analysis, flow cytometry and western blotting were used to investigate the altered cardiac function and underlying mechanisms. Results: The results showed that upregulation of TIMP3 in myocardium markedly inhibited myocardial infarct areas and the cardiac dysfunction induced by I/R or by doxorubicin treatment. TUNEL staining revealed that TIMP3 overexpression attenuated I/R-induced myocardial apoptosis, accompanied by decreased Bax/Bcl-2 ratio, Cleaved Caspase-3 and Cleaved Caspase-9 expression. In vitro, A/R-induced cardiomyocyte apoptosis was abrogated by pharmacological inhibition of reactive oxygen species (ROS) production or MAPKs signaling. Attenuation of ROS production reversed A/R-induced MAPKs activation, whereas MAPKs inhibitors showed on effect on ROS production. Furthermore, in vivo or in vitro overexpression of TIMP3 significantly inhibited I/R- or A/R-induced ROS production and MAPKs activation. Conclusion: Our findings demonstrate that TIMP3 upregulation protects against cardiac I/R injury through inhibiting myocardial apoptosis. The mechanism may be related to inhibition of ROS-initiated MAPKs pathway. This study suggests that TIMP3 may be a potential therapeutic target for the treatment of I/R injury.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Li-Ming Yu ◽  
Xue Dong ◽  
Jian Zhang ◽  
Zhi Li ◽  
Xiao-Dong Xue ◽  
...  

Endoplasmic reticulum (ER) stress and oxidative stress contribute greatly to myocardial ischemia-reperfusion (MI/R) injury. Naringenin, a flavonoid derived from the citrus genus, exerts cardioprotective effects. However, the effects of naringenin on ER stress as well as oxidative stress under MI/R condition and the detailed mechanisms remain poorly defined. This study investigated the protective effect of naringenin on MI/R-injured heart with a focus on cyclic guanosine monophosphate- (cGMP-) dependent protein kinase (PKG) signaling. Sprague-Dawley rats were treated with naringenin (50 mg/kg/d) and subjected to MI/R surgery with or without KT5823 (2 mg/kg, a selective inhibitor of PKG) cotreatment. Cellular experiment was conducted on H9c2 cardiomyoblasts subjected to simulated ischemia-reperfusion treatment. Before the treatment, the cells were incubated with naringenin (80 μmol/L). PKGIα siRNA was employed to inhibit PKG signaling. Our in vivo and in vitro data showed that naringenin effectively improved heart function while it attenuated myocardial apoptosis and infarction. Furthermore, pretreatment with naringenin suppressed MI/R-induced oxidative stress as well as ER stress as evidenced by decreased superoxide generation, myocardial MDA level, gp91phox expression, and phosphorylation of PERK, IRE1α, and EIF2α as well as reduced ATF6 and CHOP. Importantly, naringenin significantly activated myocardial cGMP-PKGIα signaling while inhibition of PKG signaling with KT5823 (in vivo) or siRNA (in vitro) not only abolished these actions but also blunted naringenin’s inhibitory effects against oxidative stress and ER stress. In summary, our study demonstrates that naringenin treatment protects against MI/R injury by reducing oxidative stress and ER stress via cGMP-PKGIα signaling. Its cardioprotective effect deserves further clinical study.


2016 ◽  
Vol 39 (1) ◽  
pp. 123-136 ◽  
Author(s):  
Haijie Yu ◽  
Haishan Zhang ◽  
Weihua Zhao ◽  
Liang Guo ◽  
Xueyuan Li ◽  
...  

Background/Aims: Ischemia-reperfusion (I/R) injury is believed to be the major cause for detriments in coronary heart diseases, but few effective therapies for prevention or treatment of I/R injury are available. Gypenoside (GP) is the predominant effective component of Gynostemma pentaphyllum and possesses capacities against inflammation and oxidation. In the present study, the role of GP in ameliorating myocardial I/R injury was investigated. Methods: effect GP on the cardiac structure of I/R injured rats was assessed by H&E and TTC staining. Then the influence of GP on the cardiac function of rat model was determined by measuring hemodynamics parameters, levels of lactate dehydrogenase (LDH) and creatine kinase (CK). Thereafter, effect of GP on apoptotic process was evaluated with both rat and cell models. The production of molecules related to ER stress and apoptosis was quantified for revelation of pathways involved in the myocardial protective effect of GP. Results: Impairments in cardiac structure due to I/R injury was ameliorated by GP treatment. And it was evidently demonstrated that administration of GP not only effectively decreased the apoptotic rates in both rat and cell models but also markedly improved the cardiac function of I/R injured rats. In addition, results of western blotting revealed that the GP inhibited ER-stress and apoptosis through the blockade of CHOP pathway and activation of PI3K/Akt pathway. Conclusion: the current study showed the potential of GP to alleviate myocardial I/R injury and preliminarily uncovered the underling mechanism driving this treatment.


1999 ◽  
Vol 276 (3) ◽  
pp. H803-H814 ◽  
Author(s):  
Nacéra Saadane ◽  
Lesley Alpert ◽  
Lorraine E. Chalifour

Differential display identified that gene fragment HA220 homologous to the transcriptional activator factor II 250 (TAFII250) gene, or CCG1, was increased in hypertrophied rodent heart. To determine whether TAFII250 gene expression is modified after cardiac damage, we measured TAFII250 expression in vivo in mouse hearts after injection of the cardiotoxic agent doxorubicin (DXR) and in vitro in DXR-treated isolated rat neonatal cardiomyocytes. In vivo atrial natriuretic factor (ANF), β-myosin heavy chain (β-MHC), Egr-1, and TAFII250 expression increased with dose and time after a single DXR injection, but only ANF and β-MHC expression were increased after multiple injections. After DXR treatment of neonatal cardiomyocytes we found decreased ANF, α-MHC, Egr-1, and TAFII250 expression. Expression of the TAFII250-regulated genes, the D-type cyclins, was increased after a single injection in adult mice and was decreased in DXR-treated cardiomyocytes. Thus expression of Erg-1, TAFII250, and the D-type cyclins is modulated after cardiotoxic damage in adult and neonatal heart.


Pharmacology ◽  
2018 ◽  
Vol 103 (1-2) ◽  
pp. 1-9 ◽  
Author(s):  
Lin Ren ◽  
Qian Wang ◽  
Yu Chen ◽  
Yanzhuo Ma ◽  
Dongmei Wang

Aim: Myocardial ischemia/reperfusion (I/R) injury is a severe trauma that cells undergo and is associated with cardiomyocyte apoptosis. Recently, miRNAs have been demonstrated to play an important role in cardiovascular biology and disease. However, whether the miR-133a and ER stress play a role in hydrogen sulfide (H2S) protection of cardiomyocytes against I/R-induced apoptosis remains unclear. Methods: The neonatal cardiomyocytes were prepared to be treated with H2S or transfected with miR-133a activator or miR-133a inhibitor, either separately or in combination. Non-treated cardiomyocytes served as control. The ER stress biomarker GRP78, CHOP, and eIF2α expression levels were measured by Western blot. Cell apoptosis was assessed by flow cytometry after staining with the Annexin V- FITC. Proliferation was monitored by BrdU labeling, while cell migration and invasion were determined by Transwell assays. Results: Pre-treatment of H2S and overexpression of miR-133a reversed I/R-induced ER stress and cardiomyocyte apoptosis in vitro and in vivo. The proliferation, migration, and invasion of cardiomyocytes were significantly increased by co-treatment with H2S and overexpression of miR-133a. Conclusion: These findings suggest the protective effect of miR-133a against I/R-induced ER stress and cardiomyocyte apoptosis and its enhancement of cell motility. Thus, cardioprotection by miR-133a overexpression provides a novel therapeutic approach to the treatment of ischemic heart diseases.


2020 ◽  
Vol 11 ◽  
Author(s):  
Meng Peng ◽  
Yuan Liu ◽  
Xiang-qin Zhang ◽  
Ya-wei Xu ◽  
Yin-tao Zhao ◽  
...  

Aims: C1q/tumor necrosis factor (TNF)-related protein 5 (CTRP5) belongs to the C1q/TNF-α related protein family and regulates glucose, lipid metabolism, and inflammation production. However, the roles of CTRP5 in ischemia/reperfusion (I/R) associated with cardiac injuries and heart failure (HF) needs to be elaborated. This study aimed to investigate the roles of CTRP5 in I/R associated cardiac injuries and heart failure.Materials and Methods: Adeno-associated virus serum type 9 (AAV9)vectors were established for CTRP5 overexpression in a mouse heart (AAV9-CTRP5 mouse). AAV9-CTRP5, AMPKα2 global knock out (AMPKα2−/−)and AAV9-CTRP5+ AMPKα2−/− mice were used to establish cardiac I/R or infarction associated HF models to investigate the roles and mechanisms of CTRP5 in vivo. Isolated neonatal rat cardiomyocytes (NRCMS) transfected with or without CTRP5 adenovirus were used to establish a hypoxia/reoxygenation (H/O) model to study the roles and mechanisms of CTRP5 in vitro.Key Findings: CTRP5 was up-regulated after MI but was quickly down-regulated. CTRP5 overexpression significantly decreased I/R induced IA/AAR and cardiomyocyte apoptosis, and attenuated infarction area, and improved cardiac functions. Mechanistically, CTRP5 overexpression markedly increased AMPKα2 and ACC phosphorylation and PGC1-α expression but inhibited mTORC1 phosphorylation. In in vitro experiments, CTRP5 overexpression could also enhance AMPKα2 and ACC phosphorylation and protect against H/O induced cardiomyocytes apoptosis. Finally, we showed that CTPR5 overexpression could not protect against I/R associated cardiac injuries and HF in AMPKα2−/− mice.Significance: CTRP5 overexpression protected against I/R induced mouse cardiac injuries and attenuated myocardial infarction induced cardiac dysfunction by activating the AMPKαsignaling pathway.


2013 ◽  
Vol 699 ◽  
pp. 354-359
Author(s):  
Qing Shan Liu ◽  
Zi Qian Zhang ◽  
Xiao Yu Chen ◽  
Duo Ming Zhao ◽  
Yun Xia Duan ◽  
...  

To research the effects and mechanisms of recombinant human ciliary neurotrophic factor (rhCNTF) on ischemia/reperfusion in vivo and in vitro, rhCNTF was biosynthesized, and ischemia/reperfusion-like models were used. Protection by rhCNTF was studied at the in vivo level using a model of middle cerebral artery occlusion and reperfusion (MCAO/R) in rats. RhCNTF was administrated just before reperfusion. RhCNTF markedly increased animal viability, decreased infarct volumes and neurological deficit scores. Primary cortical neuronal cultures were subjected to oxygen-glucose deprivation/reoxygenation, and treated with rhCNTF prophylactically. Results indicated that neuronal survival rates were increased, LDH release was decreased and lose of neurite length were alleviated in rhCNTF group, and this protection was associated with nerotrophic effect, nitric oxide and neuronal nitric oxide synthase (nNOS) and inducible NOS (iNOS). The data suggest that rhCNTF may be a good therapeutic reagent to reduce cerebral ischemia/reperfusion injury, and may act by NOS regulation.


Sign in / Sign up

Export Citation Format

Share Document