scholarly journals X-ray–induced photoreduction of heme metal centers rapidly induces active-site perturbations in a protein-independent manner

2020 ◽  
Vol 295 (39) ◽  
pp. 13488-13501 ◽  
Author(s):  
Vera Pfanzagl ◽  
John H. Beale ◽  
Hanna Michlits ◽  
Daniel Schmidt ◽  
Thomas Gabler ◽  
...  

Since the advent of protein crystallography, atomic-level macromolecular structures have provided a basis to understand biological function. Enzymologists use detailed structural insights on ligand coordination, interatomic distances, and positioning of catalytic amino acids to rationalize the underlying electronic reaction mechanisms. Often the proteins in question catalyze redox reactions using metal cofactors that are explicitly intertwined with their function. In these cases, the exact nature of the coordination sphere and the oxidation state of the metal is of utmost importance. Unfortunately, the redox-active nature of metal cofactors makes them especially susceptible to photoreduction, meaning that information obtained by photoreducing X-ray sources about the environment of the cofactor is the least trustworthy part of the structure. In this work we directly compare the kinetics of photoreduction of six different heme protein crystal species by X-ray radiation. We show that a dose of ∼40 kilograys already yields 50% ferrous iron in a heme protein crystal. We also demonstrate that the kinetics of photoreduction are completely independent from variables unique to the different samples tested. The photoreduction-induced structural rearrangements around the metal cofactors have to be considered when biochemical data of ferric proteins are rationalized by constraints derived from crystal structures of reduced enzymes.

2019 ◽  
Author(s):  
Hao Wu ◽  
Jeffrey Ting ◽  
Siqi Meng ◽  
Matthew Tirrell

We have directly observed the <i>in situ</i> self-assembly kinetics of polyelectrolyte complex (PEC) micelles by synchrotron time-resolved small-angle X-ray scattering, equipped with a stopped-flow device that provides millisecond temporal resolution. This work has elucidated one general kinetic pathway for the process of PEC micelle formation, which provides useful physical insights for increasing our fundamental understanding of complexation and self-assembly dynamics driven by electrostatic interactions that occur on ultrafast timescales.


1992 ◽  
Vol 25 (2) ◽  
pp. 205-210 ◽  
Author(s):  
L. J. Keefe ◽  
E. E. Lattman ◽  
C. Wolkow ◽  
A. Woods ◽  
M. Chevrier ◽  
...  

Ambiguities in amino acid sequences are a potential problem in X-ray crystallographic studies of proteins. Amino acid side chains often cannot be reliably identified from the electron density. Many protein crystal structures that are now being solved are simple variants of a known wild-type structure. Thus, cloning artifacts or other untoward events can readily lead to cases in which the proposed sequence is not correct. An example is presented showing that mass spectrometry provides an excellent tool for analyzing suspected errors. The X-ray crystal structure of an insertion mutant of Staphylococcal nuclease has been solved to 1.67 Å resolution and refined to a crystallographic R value of 0.170 [Keefe & Lattman (1992). In preparation]. A single residue has been inserted in the C-terminal α helix. The inserted amino acid was believed to be an alanine residue, but the final electron density maps strongly indicated that a glycine had been inserted instead. To confirm the observations from the X-ray data, matrix-assisted laser desorption mass spectrometry was employed to verify the glycine insertion. This mass spectrometric technique has sufficient mass accuracy to detect the methyl group that distinguishes glycine from alanine and can be extended to the more common situation in which crystallographic measurements suggest a problem with the sequence, but cannot pinpoint its location or nature.


Author(s):  
A. Leineweber ◽  
M. Löffler ◽  
S. Martin

Abstract Cu6Sn5 intermetallic occurs in the form of differently ordered phases η, η′ and η′′. In solder joints, this intermetallic can undergo changes in composition and the state of order without or while interacting with excess Cu and excess Sn in the system, potentially giving rise to detrimental changes in the mechanical properties of the solder. In order to study such processes in fundamental detail and to get more detailed information about the metastable and stable phase equilibria, model alloys consisting of Cu3Sn + Cu6Sn5 as well as Cu6Sn5 + Sn-rich melt were heat treated. Powder x-ray diffraction and scanning electron microscopy supplemented by electron backscatter diffraction were used to investigate the structural and microstructural changes. It was shown that Sn-poor η can increase its Sn content by Cu3Sn precipitation at grain boundaries or by uptake of Sn from the Sn-rich melt. From the kinetics of the former process at 513 K and the grain size of the η phase, we obtained an interdiffusion coefficient in η of (3 ± 1) × 10−16 m2 s−1. Comparison of this value with literature data implies that this value reflects pure volume (inter)diffusion, while Cu6Sn5 growth at low temperature is typically strongly influenced by grain-boundary diffusion. These investigations also confirm that η′′ forming below a composition-dependent transus temperature gradually enriches in Sn content, confirming that Sn-poor η′′ is metastable against decomposition into Cu3Sn and more Sn-rich η or (at lower temperatures) η′. Graphic Abstract


2021 ◽  
Vol 126 (9) ◽  
Author(s):  
Nafisa Begam ◽  
Anastasia Ragulskaya ◽  
Anita Girelli ◽  
Hendrik Rahmann ◽  
Sivasurender Chandran ◽  
...  

2013 ◽  
Vol 834-836 ◽  
pp. 531-535
Author(s):  
Li Yan Yang ◽  
Yi Hui Guo ◽  
Li Li Yu ◽  
Jing You

A type of cross-linking starch microsphere (CSMs) has been synthesized via reversed phase suspension method. Crosslinked starch microsphere has good adsorption performance to metal ions in water. The adsorption kinetics of Co (II) on the CSMs, selectivity of adsorption CSMs towards Co (II),Cu (II),Pb (II),Cd (II) and adsorption effects of media towards Co (II) were investigated. The CSMs and its adsorption product were comparatively characterized by X-ray diffraction (XRD). The results showed that The adsorption rate is mainly controlled by liquid film diffusion, and the constant of adsorption rate is 0.0686min-1 at 308K. The crystal structure of the CSMs decreased greatly after the incorporation of Co (II). Co (II) has better adsorption selectivity on CSMs. Ions coexist and other substances in the solution have certain impact on adsorption. Those data are helpful for treatment of the wastewater containing heavy ions.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mohamed S. Yahia ◽  
Ahmed S. Elzaref ◽  
Magdy B. Awad ◽  
Ahmed M. Tony ◽  
Ahmed S. Elfeky

Abstract Commercial Granulated Active Carbon (GAC) has been modified using 10 Gy dose Gamma irradiation (GAC10 Gy) for increasing its ability of air purification. Both, the raw and treated samples were applied for removing Chlorpyrifos pesticide (CPF) from ambient midair. Physicochemical properties of the two materials were characterized by Fourier Transform Infrared (FT-IR) and Raman spectroscopy. The phase formation and microstructure were monitored using X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), supported with Energy-Dispersive X-ray (EDX). The Surface area measurement was detected using BET particle size prosometry. Obtained outcomes showed that, the maximum adsorption capacity, given by Langmuir equations, was greatly increased from 172.712 to 272.480 mg/g for GAC and GAC10 Gy, respectively, with high selectivity. The overall removal efficiency of GAC10 Gy was notably comparable to that of the original GAC-sorbent. The present study indicated that, gamma irradiation could be a promising technique for treating GAC and turned it more active in eliminating the pesticides pollutants from surrounding air. The data of equilibrium has been analyzed by Langmuir and Freundlich models, that were considerably better suited for the investigated materials than other models. The process kinetics of CPF adsorbed onto both tested carbon versions were found to obey the pseudo first order at all concentrations with an exception at 70 mg/l using GAC, where, the spontaneous exothermic adsorption of Chlorpyrifos is a strong function for the pseudo-first order (PFO) and pseudo second order (PSO) kinetics.


2013 ◽  
Vol 28 (S2) ◽  
pp. S458-S469 ◽  
Author(s):  
Kenny Ståhl ◽  
Christian G. Frankær ◽  
Jakob Petersen ◽  
Pernille Harris

Powder diffraction from protein powders using in-house diffractometers is an effective tool for identification and monitoring of protein crystal forms and artifacts. As an alternative to conventional powder diffractometers a single crystal diffractometer equipped with an X-ray micro-source can be used to collect powder patterns from 1 µl samples. Using a small-angle X-ray scattering (SAXS) camera it is possible to collect data within minutes. A streamlined program has been developed for the calculation of powder patterns from pdb-coordinates, and includes correction for bulk-solvent. A number of such calculated powder patterns from insulin and lysozyme have been included in the powder diffraction database and successfully used for search-match identification. However, the fit could be much improved if peak asymmetry and multiple bulk-solvent corrections were included. When including a large number of protein data sets in the database some problems can be foreseen due to the large number of overlapping peaks in the low-angle region, and small differences in unit cell parameters between pdb-data and powder data. It is suggested that protein entries are supplied with more searchable keywords as protein name, protein type, molecular weight, source organism etc. in order to limit possible hits.


Sign in / Sign up

Export Citation Format

Share Document