scholarly journals A Cell Surface Biotinylation Assay to Reveal Membrane-associated Neuronal Cues: Negr1 Regulates Dendritic Arborization

2013 ◽  
Vol 13 (3) ◽  
pp. 733-748 ◽  
Author(s):  
Francesca Pischedda ◽  
Joanna Szczurkowska ◽  
Maria Daniela Cirnaru ◽  
Florian Giesert ◽  
Elena Vezzoli ◽  
...  
2006 ◽  
Vol 17 (12) ◽  
pp. 5265-5274 ◽  
Author(s):  
Maria Lucia Sampaio Güther ◽  
Sylvia Lee ◽  
Laurence Tetley ◽  
Alvaro Acosta-Serrano ◽  
Michael A.J. Ferguson

The procyclic form of Trypanosoma brucei exists in the midgut of the tsetse fly. The current model of its surface glycocalyx is an array of rod-like procyclin glycoproteins with glycosylphosphatidylinositol (GPI) anchors carrying sialylated poly-N-acetyllactosamine side chains interspersed with smaller sialylated poly-N-acetyllactosamine–containing free GPI glycolipids. Mutants for TbGPI12, deficient in the second step of GPI biosynthesis, were devoid of cell surface procyclins and poly-N-acetyllactosamine–containing free GPI glycolipids. This major disruption to their surface architecture severely impaired their ability to colonize tsetse fly midguts but, surprisingly, had no effect on their morphology and growth characteristics in vitro. Transmission electron microscopy showed that the mutants retained a cell surface glycocalyx. This structure, and the viability of the mutants in vitro, prompted us to look for non-GPI–anchored parasite molecules and/or the adsorption of serum components. Neither were apparent from cell surface biotinylation experiments but [3H]glucosamine biosynthetic labeling revealed a group of previously unidentified high apparent molecular weight glycoconjugates that might contribute to the surface coat. While characterizing GlcNAc-PI that accumulates in the TbGPI12 mutant, we observed inositolphosphoceramides for the first time in this organism.


1998 ◽  
Vol 330 (2) ◽  
pp. 1003-1008 ◽  
Author(s):  
A. Stuart ROSS ◽  
R. Susanna KELLER ◽  
E. Gustav LIENHARD

In fat and muscle cells, the glucose transporter GLUT4 is sequestered in an intracellular compartment under basal conditions and redistributes markedly to the plasma membrane in response to insulin. Recently, we characterized a membrane aminopeptidase, designated IRAP (insulin-regulated aminopeptidase), that colocalizes with intracellular GLUT4 and similarly redistributes markedly to the plasma membrane in response to insulin in adipocytes. In contrast to GLUT4, IRAP is also expressed in 3T3-L1 fibroblasts, and this finding provided an opportunity to compare its subcellular distribution in fibroblasts and adipocytes. The relative amount of IRAP at the cell surface was measured by a cell surface biotinylation method. The portion of total IRAP at the cell surface in unstimulated adipocytes was 30% of that in unstimulated fibroblasts. Upon insulin treatment the portion of IRAP at the cell surface was the same in fibroblasts and adipocytes, and was increased 1.8-fold in fibroblasts and 8-fold in adipocytes. A similar analysis of the distribution of the transferrin receptor (TfR), the paradigm for recycling plasma membrane receptors, revealed that the portions of the TfR at the cell surface in both the basal and insulin-treated states were almost unchanged upon differentiation, and that insulin caused an increase of about 1.6-fold in the amount of TfR at the cell surface. These results show that enhanced intracellular sequestration of IRAP occurs during adipogenesis, and that this effect underlies the larger insulin-elicited fold increase of IRAP at the cell surface in adipocytes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jonas Mattisson ◽  
Marcus Danielsson ◽  
Maria Hammond ◽  
Hanna Davies ◽  
Caroline J. Gallant ◽  
...  

AbstractMosaic loss of chromosome Y (LOY) in immune cells is a male-specific mutation associated with increased risk for morbidity and mortality. The CD99 gene, positioned in the pseudoautosomal regions of chromosomes X and Y, encodes a cell surface protein essential for several key properties of leukocytes and immune system functions. Here we used CITE-seq for simultaneous quantification of CD99 derived mRNA and cell surface CD99 protein abundance in relation to LOY in single cells. The abundance of CD99 molecules was lower on the surfaces of LOY cells compared with cells without this aneuploidy in all six types of leukocytes studied, while the abundance of CD proteins encoded by genes located on autosomal chromosomes were independent from LOY. These results connect LOY in single cells with immune related cellular properties at the protein level, providing mechanistic insight regarding disease vulnerability in men affected with mosaic chromosome Y loss in blood leukocytes.


2021 ◽  
Vol 22 (13) ◽  
pp. 6836
Author(s):  
Hana I. Lim ◽  
Katherine A. Hajjar

As a cell surface tissue plasminogen activator (tPA)-plasminogen receptor, the annexin A2 (A2) complex facilitates plasmin generation on the endothelial cell surface, and is an established regulator of hemostasis. Whereas A2 is overexpressed in hemorrhagic disease such as acute promyelocytic leukemia, its underexpression or impairment may result in thrombosis, as in antiphospholipid syndrome, venous thromboembolism, or atherosclerosis. Within immune response cells, A2 orchestrates membrane repair, vesicle fusion, and cytoskeletal organization, thus playing a critical role in inflammatory response and tissue injury. Dysregulation of A2 is evident in multiple human disorders, and may contribute to the pathogenesis of various inflammatory disorders. The fibrinolytic system, moreover, is central to wound healing through its ability to remodel the provisional matrix and promote angiogenesis. A2 dysfunction may also promote tissue fibrogenesis and end-organ fibrosis.


Sign in / Sign up

Export Citation Format

Share Document