scholarly journals Assessment of impact of climate change on water resources: a long term analysis of the Great Lakes of North America

2008 ◽  
Vol 12 (1) ◽  
pp. 239-255 ◽  
Author(s):  
E. McBean ◽  
H. Motiee

Abstract. In the threshold of the appearance of global warming from theory to reality, extensive research has focused on predicting the impact of potential climate change on water resources using results from Global Circulation Models (GCMs). This research carries this further by statistical analyses of long term meteorological and hydrological data. Seventy years of historical trends in precipitation, temperature, and streamflows in the Great Lakes of North America are developed using long term regression analyses and Mann-Kendall statistics. The results generated by the two statistical procedures are in agreement and demonstrate that many of these variables are experiencing statistically significant increases over a seven-decade period. The trend lines of streamflows in the three rivers of St. Clair, Niagara and St. Lawrence, and precipitation levels over four of the five Great Lakes, show statistically significant increases in flows and precipitation. Further, precipitation rates as predicted using fitted regression lines are compared with scenarios from GCMs and demonstrate similar forecast predictions for Lake Superior. Trend projections from historical data are higher than GCM predictions for Lakes Michigan/Huron. Significant variability in predictions, as developed from alternative GCMs, is noted. Given the general agreement as derived from very different procedures, predictions extrapolated from historical trends and from GCMs, there is evidence that hydrologic changes particularly for the precipitation in the Great Lakes Basin may be demonstrating influences arising from global warming and climate change.

2012 ◽  
Vol 25 (21) ◽  
pp. 7723-7742 ◽  
Author(s):  
Jonathan Gula ◽  
W. Richard Peltier

The Weather Research and Forecasting model (WRF) is employed to dynamically downscale global warming projections produced using the Community Climate System Model (CCSM). The analyses are focused on the Great Lakes Basin of North America and the climate change projections extend from the instrumental period (1979–2001) to midcentury (2050–60) at a spatial resolution of 10 km. Because WRF does not currently include a sufficiently realistic lake component, simulations are performed using lake water temperature provided by D.V. Mironov’s freshwater lake model “FLake” forced by atmospheric fields from the global simulations. Results for the instrumental era are first compared with observations to evaluate the ability of the lake model to provide accurate lake water temperature and ice cover and to analyze the skill of the regional model. It is demonstrated that the regional model, with its finer resolution and more comprehensive physics, provides significantly improved results compared to those obtained from the global model. It much more accurately captures the details of the annual cycle and spatial pattern of precipitation. In particular, much more realistic lake-induced precipitation and snowfall patterns downwind of the lakes are predicted. The midcentury projection is analyzed to determine the impact of downscaling on regional climate changes. The emphasis in this final phase of the analysis is on the impact of climate change on winter snowfall in the lee of the lakes. It is found that future changes in lake surface temperature and ice cover under warmer conditions may locally increase snowfall as a result of increased evaporation and the enhanced lake effect.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1762 ◽  
Author(s):  
Nathan Rickards ◽  
Thomas Thomas ◽  
Alexandra Kaelin ◽  
Helen Houghton-Carr ◽  
Sharad K. Jain ◽  
...  

The Narmada river basin is a highly regulated catchment in central India, supporting a population of over 16 million people. In such extensively modified hydrological systems, the influence of anthropogenic alterations is often underrepresented or excluded entirely by large-scale hydrological models. The Global Water Availability Assessment (GWAVA) model is applied to the Upper Narmada, with all major dams, water abstractions and irrigation command areas included, which allows for the development of a holistic methodology for the assessment of water resources in the basin. The model is driven with 17 Global Circulation Models (GCMs) from the Coupled Model Intercomparison Project Phase 5 (CMIP5) ensemble to assess the impact of climate change on water resources in the basin for the period 2031–2060. The study finds that the hydrological regime within the basin is likely to intensify over the next half-century as a result of future climate change, causing long-term increases in monsoon season flow across the Upper Narmada. Climate is expected to have little impact on dry season flows, in comparison to water demand intensification over the same period, which may lead to increased water stress in parts of the basin.


2021 ◽  
Vol 10 (2) ◽  
pp. 1
Author(s):  
Hassan Bazazzadeh ◽  
Adam Nadolny ◽  
Seyedeh Sara Hashemi Safaei

The growth of urban population as the result of economic and industrial development has changed our place of living from a prosperous place to where the resources are carelessly consumed. On the other hand, long-term climate change, i.e. global warming, has had adverse impact on our resources. Certain resources are on the verge of depletion as the consequence of climate change and inconsiderate consumption of resources, unless serious measures are implemented immediately. The building sector, whose share in the municipal energy consumption is considerably high, is a key player that may successfully solve the problem. This paper aims to study the effects of climate change on the energy consumption of buildings and analyze its magnitude to increase the awareness of how construction can reduce the overall global energy consumption. A descriptive-analytical method has been applied to analyze valid models of energy consumption according to different scenarios and to interpret the conditions underlying current and future energy consumption of buildings. The results clearly show that the energy consumption in the building sector increasingly depends on the cooling demand. With that being said, we can expect the reduction of overall energy consumption of buildings in regions with high heating demands, whereas rising the energy consumption in buildings is expected in regions with high cooling demand. To conclude, the long-term climate change (e.g. global warming) underlies the increased energy consumption for the cooling demand whose share in total energy consumption of buildings much outweighs the heating demand. Therefore, to conserve our resources, urban energy planning and management should focus on working up a proper framework of guidelines on how to mitigate the cooling loads in the energy consumption patterns of buildings.


2020 ◽  
Vol 6 (50) ◽  
pp. eabb8428
Author(s):  
M. L. Pinsky ◽  
L. A. Rogers ◽  
J. W. Morley ◽  
T. L. Frölicher

Societies increasingly use multisector ocean planning as a tool to mitigate conflicts over space in the sea, but such plans can be highly sensitive to species redistribution driven by climate change or other factors. A key uncertainty is whether planning ahead for future species redistributions imposes high opportunity costs and sharp trade-offs against current ocean plans. Here, we use more than 10,000 projections for marine animals around North America to test the impact of climate-driven species redistributions on the ability of ocean plans to meet their goals. We show that planning for redistributions can substantially reduce exposure to risks from climate change with little additional area set aside and with few trade-offs against current ocean plan effectiveness. Networks of management areas are a key strategy. While climate change will severely disrupt many human activities, we find a strong benefit to proactively planning for long-term ocean change.


2021 ◽  
pp. 17-23
Author(s):  
Szira Zoltán ◽  
Bárdos Kinga Ilona ◽  
Alghamdi Hani ◽  
Enkhjav Tumentsetseg ◽  
Erika Varga

2019 was Earth's second warmest year since 1850. In 2019 the global mean temperature was cooler than in 2016, but warmer than any other year explicitly measured. Consequently, 2016 is still the warmest year in historical observation history. Year-to-year rankings are likely to reflect natural fluctuations in the short term, but the overall pattern remains consistent with a long-term global warming trend. This would be predicted from global warming caused by greenhouse gases, temperature increase across the globe is broadly spread, impacting almost all areas of land and oceans. Climate change" and "global warming" are often used interchangeably but are of distinct significance. Global warming is the long-term heating of the Earth's climate system observed since the pre-industrial period as a result of human activities, mainly the combustion of fossil fuel, which raises the heat-trapping greenhouse gas levels in the Earth's air. The term is often used interchangeably with the term climate change, as the latter applies to warming caused both humanly and naturally, and the impact it has on our planet. This is most generally calculated as the average increase in global surface temperature on Earth. Carbon dioxide emission is one of the main reasons for global warming. Since the Industrial Revolution, human sources of carbon dioxide emissions have been growing. Human activities such as the burning of oil, coal and gas, as well as deforestation are the primary cause of the increased carbon dioxide concentrations in the atmosphere. In our research, let’s examine the relationship between the amount of carbon dioxide emissions and the GDP/capita in developed and developing countries.


2006 ◽  
Vol 3 (5) ◽  
pp. 3183-3209 ◽  
Author(s):  
E. McBean ◽  
H. Motiee

Abstract. Historical trends in precipitation, temperature, and streamflows in the Great Lakes are examined using regression analysis and Mann-Kendall statistics, with the result that many of these variables demonstrate statistically significant increases ongoing for a six decade period. Future precipitation rates as predicted using fitted regression lines are compared with scenarios from Global Climate Change Models (GCMs) and demonstrate similar forecast predictions for Lake Superior. Trend projections from historical data are, however, higher than GCM predictions for Michigan/Huron. Significant variability in predictions, as developed from alternative GCMs, is noted. Given the general agreement as derived from very different procedures, predictions extrapolated from historical trends and from GCMs, there is evidence that hydrologic changes in the Great Lakes Basin are likely the result of climate change.


2020 ◽  
Author(s):  
Mamadou Lamine Mbaye ◽  
Khadidiatou Sy ◽  
Bakary Faty ◽  
Saidou Moustapha Sall

<p>Climate change raises many questions about the future availability of water resources in West Africa. Indeed, water in this region is a fundamental element for many socio-economic activities. This study proposes an assessment of the impact of climate change on the hydrology of the Faleme basin, located in the Sahel (West Africa). The applied methodology consists in calibrating and validating the hydrological model GR4J before simulating the future evolution of flows in this catchment under of 1.5 and 2°C global warming.  Observed rainfall, potential evapotranspiration (PET), and river flows were used for calibration and validation of the GR4J model. Furthermore, output of three regional climate models (DMI-HIRHAM, SHIM-RCA, and BCCR-WRF) were bias corrected with the cumulative distribution function-transform (CDF-t) before used as input to the GR4J hydrological model to simulate future flows at the watershed scale. During the historical period the results shows a good correspondence between the simulated flows and those observed during calibration and validation, with Nash–Sutcliffe efficiencies (NSE) greater than 70%. Projections show a general increase in mean annual temperature and PET; a decrease in mean annual rainfall is projected by the DMI-HIRHAM, BCCR-WRF models and the overall mean; while a slight increase is noted with the SMHI-RCA model. As for future flows, a downward trend in annual and monthly average flows is expected in the two sub-basins of the Faleme (Kidira and Gourbassi) with input from the DMI-HIRHAM, BCCR-WRF models and the overall mean; however,  the GR4J forced by the SMHI-RCA model output, project increased flows. Furthermore, the decrease is more pronounced at Gourbassi sub-basin than at Kidira sub-basin. Thus, recommendations were made to mitigate the likely impacts of climate change on socio-economic activities that use water resources.</p>


Author(s):  
Jouni Heiskanen ◽  
Christian Brümmer ◽  
Nina Buchmann ◽  
Carlo Calfapietra ◽  
Huilin Chen ◽  
...  

AbstractSince 1750, land use change and fossil fuel combustion has led to a 46 % increase in the atmospheric carbon dioxide (CO2) concentrations, causing global warming with substantial societal consequences. The Paris Agreement aims to limiting global temperature increases to well below 2°C above pre-industrial levels. Increasing levels of CO2 and other greenhouse gases (GHGs), such as methane (CH4) and nitrous oxide (N2O), in the atmosphere are the primary cause of climate change. Approximately half of the carbon emissions to the atmosphere is sequestered by ocean and land sinks, leading to ocean acidification but also slowing the rate of global warming. However, there are significant uncertainties in the future global warming scenarios due to uncertainties in the size, nature and stability of these sinks. Quantifying and monitoring the size and timing of natural sinks and the impact of climate change on ecosystems are important information to guide policy-makers’ decisions and strategies on reductions in emissions. Continuous, long-term observations are required to quantify GHG emissions, sinks, and their impacts on Earth systems. The Integrated Carbon Observation System (ICOS) was designed as the European in situ observation and information system to support science and society in their efforts to mitigate climate change. It provides standardized and open data currently from over 140 measurement stations across 12 European countries. The stations observe GHG concentrations in the atmosphere and carbon and GHG fluxes between the atmosphere, land surface and the oceans. This article describes how ICOS fulfills its mission to harmonize these observations, ensure the related long-term financial commitments, provide easy access to well-documented and reproducible high-quality data and related protocols and tools for scientific studies, and deliver information and GHG-related products to stakeholders in society and policy.


2020 ◽  
Vol 4 (1) ◽  
pp. 78
Author(s):  
Talent Ndlovu ◽  
Sylvain Charlebois

Studies have shown the impact of climate change on the ocean ecosystem and the fishing and aquaculture sectors. As global warming intensifies, this will impact communities and communities as the populations of some fish species decline or increase. Research on the impacts of climate change to fisheries will facilitate the development of policies, helping communities to adapt while ensuring resilience and sustainability of the sector(s). This paper assesses the short term and long-term impacts of climate change to the ocean ecosystem, the consequences to economies and communities that rely on fishing for food security. It begins with a review of peer reviewed literature, followed by an analysis of the current policies and ends with some recommendations for governments in the sustainability and management of the ecosystem in the future. Important to note is the impact of human generated hazards and how a more holistic approach to minimizing risks to the ocean ecosystem could resolve threats of food insecurity in future.


Author(s):  
C. P. Kumar

Climate change poses uncertainties to the supply and management of water resources. While climate change affects surface water resources directly through changes in the major long-term climate variables such as air temperature, precipitation, and evapotranspiration, the relationship between the changing climate variables and groundwater is more complicated and poorly understood. The greater variability in rainfall could mean more frequent and prolonged periods of high or low groundwater levels, and saline intrusion in coastal aquifers due to sea level rise and resource reduction. This chapter presents the likely impact of climate change on groundwater resources and methodology to assess the impact of climate change on groundwater resources.


Sign in / Sign up

Export Citation Format

Share Document