scholarly journals Effects of subcutaneous melatonin implants during long daylength on voluntary feed intake, rumen capacity and heart rate of red deer (Cervus elaphus) fed on a forage diet

1992 ◽  
Vol 68 (1) ◽  
pp. 77-88 ◽  
Author(s):  
B. M. Françoise Domingue ◽  
P. R. Wilson ◽  
D. W. Dellow ◽  
T. N. Barry

Subcutaneous melatonin implants were administered to castrated hand-reared male red deer (Cervus elaphus) during a 63 d period in spring, after which effects on voluntary feed intake (VFI), rumen pool size, rumen capacity (i.e. volume) and heart rate were measured on four occasions, evenly spread over a 12-month period, with the deer individually fed indoors on a diet of lucerne (Medicago sativa) chaff. Blood samples for hormone determinations were taken at intervals throughout the study. Day-time plasma melatonin concentration was approximately 5 pg/ml in control animals, whereas during melatonin administration it increased to 60–150 pg/ml and declined to 30 pg/ml by 142 d after the last implantation. Melatonin administration markedly depressed plasma prolactin concentration during the period of implantation, but thereafter plasma prolactin concentration rose in the treated animals during autumn and winter, whilst it declined in control animals over this period. VFI, rumen pool size and heart rate in control animals attained highest values in summer and lowest values in winter, showing a pronounced seasonal cycle. Melatonin administration depressed all these values in late spring and summer and increased all the values in autumn and winter, relative to control animals, and appeared to move the cycles by approximately 6 months. Melatonin-treated animals showed maximum values for all these measurements during winter. The castrated male deer showed little seasonal change in live weight, which was not affected by melatonin administration. The findings support the view that melatonin probably mediates the effect of daylength on digestive function in red deer. Rumen capacity remained relatively constant throughout the year, but rumen pool size as a proportion of rumen capacity increased with increasing VFI.

2015 ◽  
Vol 77 ◽  
pp. 95-102
Author(s):  
D.R. Stevens ◽  
I.D. Corson

Changes in voluntary feed intake (VFI) and average daily gain (ADG) of 10- to 12-month-old male red deer (Cervus elaphus) in response to a range of pasture morphological development stages of perennial ryegrass (Lolium perenne L.) and white clover (Trifolium repens L.) pasture in spring were investigated. An intake study in November 2000 tested responses to pastures spelled for 6, 8 or 10 weeks in a combined indoor/outdoor comparison over two weeks. This was followed by a 5 week grazing study which compared 3, 5 or 7 week spelling periods during November and December in 2001. Pasture spelled for 6, 8 or 10 weeks had acid detergent fibre concentrations of 216, 229 and 252 g/kg DM (P


2003 ◽  
Vol 9 ◽  
pp. 41-43
Author(s):  
D.R. Stevens ◽  
I.D. Corson ◽  
R.P. Littlejohn

Deer are seasonal animals with a feed intake that varies with day length, reaching a low in winter. Feed intake then rises rapidly in spring. Superimposed on the nutritional response to day length are the genetics of the deer. This paper documents preliminary findings of live weight gain in winter and spring and intake during September for red deer (Cervus elaphus) and elk (Cervus elaphus canadensis) x red deer hybrids. Two experiments examined the relative growth rates and feed intake of rising 1 year old red and elk x red hybrid male deer during winter and spring 2001 and 2002. Live weight gain was higher in the elk x red than the red deer in both winter (averaging 262 and 144 g/d respectively) and spring (averaging 390 and 272 g/d respectively). Dry matter intake in September 2001 was 1.64 and 2.13 kg DM/d for red and elk x red deer respectively (P=0.003). Dry matter intake in September 2002 averaged 2.04 and 2.35 kg DM/d (P


1992 ◽  
Vol 55 (2) ◽  
pp. 265-270 ◽  
Author(s):  
C. L. Adam ◽  
C. E. Kyle ◽  
P. Young

AbstractSince the productivity of farmed red deer is constrained by their inherent seasonal biology, the potential advantages of breeding out-of-season following melatonin administration were investigated. Calves born in February (F; no. = 8) were heavier at weaning in September of the same year than calves born with normal birth dates in June (}; no. = 8) (73·2 v. 441 (s.e.d. 3·59) kg; P < 0·001) and at the end of April of the next year (88·0 v. 67·6 (s.e.d. 6·44) kg; P < 0·02) although their suckled live-weight gain to 100 days of age was lower (304 v. 361 (s.e.d. 21·4) g/day; P < 0·05). After weaning, F calves had higher voluntary food intake than / calves (g dry matter per head per day) from September to November (1643 v. 2224 (s.e.d. 92·6); P < 0·002), November to February (1435 v. 926 (s.e.d. 67·9); P < 0·002), and February to April (1487 v. 2059 (s.e.d. 115·5); P < 0·02).Unlike J calves, F calves showed puberty in their first autumn. F male calves (no. = 3) grew antlers which hardened in November, whereas J males (no. = 3) did not, and F males, aged 8 months, had significantly higher mean plasma concentrations of testosterone than J males, aged 4 months (1·35 v. 0·28 (s.e.d. 0·154) fj.g/1, P < 0·001). Oestrous cyclicity was observed in 3/5 group F females, aged 9 months, but in 0/5 group ] females, aged 5 months. Although the dams of F and ] calves had similar live weights at mating, birth and 100 days pos t partum, F dams were heavier (P < 0·05) at weaning. Following parturition, F dams had a mean voluntary food intake of 2700 (s.e. 110) g dry matter per head per day from February to April.


1998 ◽  
Vol 131 (2) ◽  
pp. 197-204 ◽  
Author(s):  
E. K. ADU ◽  
T. N. BARRY ◽  
P. R. WILSON ◽  
P. D. KEMP

Lactating red deer (Cervus elaphus) hinds and their calves were rotationally grazed on Lotus corniculatus or perennial ryegrass/white clover pasture at an allowance of 12 kg DM/hind/day during summer 1996 in Palmerston North, New Zealand. Half the hinds suckled pure red deer calves and half suckled hybrid (0·25 elk[ratio ]0·75 red deer) calves. Measurements were made of the diet selected, voluntary feed intake of the hinds and liveweight changes of the hinds and calves.Lotus corniculatus and perennial ryegrass constituted c. 90% of green material in the diet selected on the respective forages. Total nitrogen (N) content and organic matter digestibility (OMD) were higher for Lotus corniculatus than for perennial ryegrass/white clover pasture. Lotus corniculatus contained 21 g condensed tannin (CT)/kg dry matter (DM), whilst pasture contained only traces of CT (1·6 g/kg DM).Hinds grazing Lotus corniculatus tended to have higher voluntary feed intake, and calf liveweight gain (485 v. 399 g/day) and weaning weight (52·6 v. 48·1 kg) were greater than for deer grazing perennial ryegrass/white clover pasture. Hybrid calves grew faster than pure red deer calves (P<0·01), with hybrid calves grazing lotus having very high liveweight gain (c. 520 g/day). Liveweight gain of hinds grazing Lotus corniculatus also tended to be higher (91 v. 20 g/day) than for hinds grazing perennial ryegrass/white clover pasture. CT was bound more strongly during chewing by red deer than had been found in comparable studies with sheep and the nutritional significance of this is discussed. Nutritional reasons for the superior performance of deer grazing Lotus corniculatus are discussed.


1967 ◽  
Vol 9 (2) ◽  
pp. 149-154 ◽  
Author(s):  
D. J. A. Cole ◽  
J. E. Duckworth ◽  
W. Holmes

1. Voluntary feed intake, performance and carcass quality were studied with 20 individually housed pigs given isocaloric diets (2,770 kcal/kg. DM) containing either 8·9 % or 12·9 % crude fibre in the dry matter over the period of growth from 45 to 91 kg. live-weight.2. There were no significant differences between diets in voluntary feed intake, rate of gain or carcass quality.3. Apparent digestibility coefficients and rates of passage of the diets were determined in eight castrated male pigs. Rates of passage were not significantly affected by diet or live-weight when determined at 57 and 82 kg. live-weight.


2001 ◽  
Vol 73 (2) ◽  
pp. 305-311 ◽  
Author(s):  
J. R. Webster ◽  
I. D. Corson ◽  
R. P. Littlejohn ◽  
S. K. Martin ◽  
J. M. Suttie

AbstractYoung male red deer follow a seasonal growth pattern that can be shifted by altering the photoperiod they experience. An increase in photoperiod to 16 h of light per day (16L : 8D) during winter advances the onset of rapid growth and high food intake that normally commences in spring. These changes are associated with increased growth hormone (GH) and insulin-like growth factor-1 (IGF-1) secretion. The GH/IGF-1 axis is acutely sensitive to the level of nutrition and the relative rôles of photoperiod and nutrition in determining the spring IGF-1 rise is unknown. The present experiment set out to examine this by exposing two groups of deer (no. = 8 per group) to a photoperiod shift during their 1st year of life (16L : 8D from 2 June), designed to cause accelerated growth and increased food intake after approximately 7 weeks. However, after 6 weeks the food intake (pellets containing 11 MJ metabolizable energy and 160 g crude protein per kg dry matter (DM)) of one group (LDRES) was clamped, thereby preventing the intake component of the response. The intake of the other group (LDAL) remained ad libitum for a further 12 weeks until 6 October, when the experiment concluded.During the first 6 weeks of 16L : 8D, growth rate (118 (s.e. 15·4) g/day) and food intake (1·37 (s.e. 0·031) kg DM per head per day) did not differ between the groups. Food intake following the clamp in LDRES averaged 1·40 (s.e. 0·015) kg per head per day. The intake of LDAL increased 2 weeks after the clamp and thereafter was higher than LDRES (P < 0·001). Food intake of LDAL averaged 2·13 (s.e. 0·051) kg during the nutritional clamp period. Growth rates increased in both groups during the first 3 weeks of the clamp, averaging 237 (s.e. 25·0) g/day, then growth slowed in LDRES and live weights diverged. Growth rates until the end of the experiment (147 (s.e.23·0) g/ day v. 299 (s.e. 12·5) g/day, P < 0·001) and mean live weight over the last 5 weeks of the experiment were lower (P < 0·05) in LDRES than LDAL, weights reaching 88·3 (s.e. 1·86) kg and 97·9 (s.e. 2·74) kg respectively on the final sampling date. Metatarsal bone length grew more in LDAL than in LDRES (3·1 v. 2·2 cm, s.e.d. = 0·23, P < 0·01). Prior to the nutritional clamp, mean plasma prolactin and IGF-1 concentrations increased at 3 and 6 weeks after 16L : 8D respectively, in both groups. Prolactin concentrations were lower in LDRES than LDAL on two occasions, at weeks 3 and 7 after the onset of the nutritional clamp, and IGF-1 concentrations were lower in LDRES than LDAL (676 v. 872 ng/ml, s.e.d. = 73·8, P < 0·05) over the last 7 weeks of sampling.In summary, a photoperiodically driven increase in IGF-1 occurred even when the usual associated increase in food intake was prevented. This indicates that the seasonal IGF-1 rise in red deer is not a consequence of the increased food intake, although the latter appears necessary to maintain elevated IGF-1 concentrations. The rise in IGF-1 may therefore be considered as a component of the photoperiodically entrained seasonal drive to grow, and the increase in food intake a response to satisfy the increased energy demand.


2019 ◽  
Vol 17 (2) ◽  
pp. e0603
Author(s):  
Pedro González-Redondo ◽  
Francisco P. Caravaca ◽  
Alberto García-Ávarez ◽  
Fernando Martínez-Moreno

Japanese quail (Coturnix coturnix japonica) usually fed on ground or pelleted balanced feeds, while whole grains are supplied in alternative systems. Voluntary intake and preference of four whole-grain cereals (durum wheat, bread wheat, triticale and barley) were assessed in Japanese quails. Two experiments were performed: (i) a trial with five batches of six randomly selected quails (three males, three females) allocated to each treatment consisting of one cereal or a balanced feed (control) in the voluntary intake experiment; and (ii) a trial with four bird batches receiving simultaneously the four cereals in the preference experiment. Three repetitions of each trial were performed. When feedstuffs were provided as a sole feed, voluntary feed intake differed, being the highest in quails fed the balanced feed (20.0 g/d), intermediate for durum wheat (15.0 g/d), bread wheat (15.8 g/d) or triticale (15.6 g/d), and the lowest for barley (12.1 g/d). Voluntary intake did not differ between sexes. Positive correlations existed between voluntary feed intake and live weight of quails, being the highest and very strong for the balanced feed, moderate for durum and bread wheat and barley, and weak for triticale. The preference trial showed that quails preferred durum wheat (7.1 g/d), triticale (4.0 g/d), bread wheat (3.0 g/d) and barley (0.3 g/d) in descending order, independently of sex. Positive correlations existed between daily feed intake and live weight of birds for durum and bread wheat. Strong positive correlation existed between bird live weight and total intake when the four cereals were available simultaneously. Differences in voluntary intake and preference among whole-grain cereals should be take into account when used to feed quails.


1997 ◽  
Vol 65 (2) ◽  
pp. 305-310 ◽  
Author(s):  
J. R. Webster ◽  
I. D. Corsor ◽  
R. P. Littlejohn ◽  
J. M. Suttie

AbstractThe growth of male red deer slows during the first winter of life before increasing again during spring. This study aimed to determine if this period of slow growth could be minimized using artificial photoperiods during autumn and winter (10 April (week 1) to 11 September (week 23), southern hemisphere). Four groups of deer (no. = 10) were housed indoors as follows. Two groups were placed on a winter solstice photoperiod (8·5 light (L): 15·5 dark (D)) and given either a natural increase in photoperiod to 11·25L: 12·75D (WSN) or held on 8·5L: 15·5D for 7 weeks followed by an abrupt increase to 11·25L: 12·75D (WSH). One group was exposed to a summer solstice photoperiod of 16L: 8D (SS) and one group exposed to a natural photoperiodic pattern (IC). A fifth group of deer (no. = 10) was maintained outside on a gravelled enclosure under natural changes in photoperiod (OC). All groups were given a diet containing 160 g protein per kg and 11·0 MJ metabolizable energy per kg dry matter (DM) ad libitum. All animals were weighed weekly and group food intake recorded daily. Metatarsal length was measured at weeks 3,17 and 22 from the start of treatments.The major differences occurred between SS and the other groups. After a period of slower growth (weeks 1 to 5, SS = 88 g/day v. 168 g/day other groups, s.e.d. 31·2, P < 0·05), SS grew more rapidly from week 10 (P < 0·01). As a result, SS was heaviest from week 17 (P < 0·05) until the end of the experiment (P < 0·01). The mean growth rate of SS animals from weeks 10 to 23 was 346 g/day compared with 173 g/day (s.e.d. 15·3; P < 0·001) for the other groups. Over the whole experiment, SS animals gained 42·3 kg live weight, compared with 31·1 kg for WSN, 26·6 kg for WSH, 25·1 kg for OC and 23·7 kg for IC (s.e.d. 2·08 kg P < 0·01). The DM intake of SS from week 9 until the end of the experiment averaged 2·04 kg DM per head per day compared with 1·48 (s.e. 0·041) kg DM per head per day for the mean of the other groups. Metatarsal length increased more in SS than the other groups (P < 0·001) between weeks 3 and 17 and was longest in SS at weeks 17 and 22 (P < 0·01). Exposure to a 16L: 8D photoperiod during winter advanced the rapid growth of red deer calves normally associated with spring and summer. This response may be used to advance slaughter dates for venison production.


1998 ◽  
Vol 67 (2) ◽  
pp. 363-370 ◽  
Author(s):  
J. R. Webster ◽  
I. D. Corson ◽  
R. P. Littlejohn ◽  
S. K. Stuart ◽  
J. M. Suttie

AbstractWinter growth of young male red deer can be increased by exposure to 16 h of light (L) and 8 h of dark (D) per day (16L: 8D). This study tested the duration of photoperiod required for this growth response, determined if the time to reach slaughter weight can be reduced and monitored plasma IGF-1, prolactin and reproductive development. Fifty male calves were allocated to five equal groups. Four groups were housed indoors and for 33 weeks from the winter solstice (22 June, southern hemisphere) until 11 February were placed under either 16L: 8D (16L), 13·25L: 10·75D (13L), 10·751:13·25D (111) or 8L: 16D (8L) photoperiods. The fifth group of deer (OC) remained outside in a gravelled enclosure. All groups were given a pelleted diet ad libitum. Group food intake was recorded daily, individual live weight was measured weekly and testes diameter and blood samples taken at weekly or 2-week intervals.Plasma prolactin concentrations in 16L increased within 4 weeks of treatment and were different (P < 0·001) between groups from 14 August to 4 September. IGF-1 increased in both 16L and 13L 4 weeks after treatments and then increased further in 16L above that of 13L (P < 0·01). All groups grew at the same rate for the first 7 weeks. 16L then gained more weight (P < 0·001) than the other groups over the next 19 weeks (50·7 kg v. 38·5 for 13L, 35·7 for 11L, 37·0 for 8L and 37·4 for OC; s.e.d. 3·76). Food intake was positively related to growth rate in a similar way among the inside groups (P < 0·001), however there was a higher energy requirement outdoors (P < 0·05). A target live weight for slaughter of 95 kg was reached 7 weeks earlier for 16L than the other groups (P < 0·01). Testes diameter of 16L was larger than in the other groups from 13 November until 24 December (P < 0·001). The growth oflSL slowed from 1 January while that of OC increased and the live weight ofOC was equal to 16L by the end of the experiment. OC also had the largest testes diameter from 5 February onwards (P < 0·01). The live-weight increase in OC was associated with increases in both prolactin and IGF-1 levels.This study confirmed that 16L: 8D stimulates rapid growth of young male red deer during winter for sufficient time to achieve an earlier slaughter date. The live-weight advantage was lost by late summer however. The increased growth rate was mediated by food intake and associated with increases in IGF-1 and prolactin and earlier reproductive development. Photoperiods of 13 h of light per day or less did not stimulate growth and increases in IGF-1 and prolactin were of a lower amplitude than under 16L: 8D.


Sign in / Sign up

Export Citation Format

Share Document