Pollutant-induced effects on immunological and physiological interactions in aquatic host–trematode systems: implications for parasite transmission

2006 ◽  
Vol 80 (2) ◽  
pp. 137-149 ◽  
Author(s):  
N.J. Morley ◽  
J.W. Lewis ◽  
D. Hoole

AbstractUnder conditions of pollution both host and parasite are susceptible to the pathogenic effects of toxicants, which in turn may result in detrimental changes to their immunological and physiological processes. Digenetic trematodes, which encompass species of both medical and economic importance, possess complex life cycles and are common parasites of both vertebrates and molluscs. The combined stress induced by pollution and parasitism influences the physiology of the host which can have implications not only on host survival but also on the functional biology of resident parasite populations. The present paper reviews the effects of pollutants on the immunology and physiology in both vertebrate and molluscan host–trematode systems and the implications for parasite transmission.

Parasitology ◽  
2009 ◽  
Vol 137 (4) ◽  
pp. 743-754 ◽  
Author(s):  
T. K. ANDERSON ◽  
M. V. K. SUKHDEO

SUMMARYThe presence or absence of parasites within host populations is the result of a complex of factors, both biotic and abiotic. This study uses a non-parametric classification tree approach to evaluate the relative importance of key abiotic and biotic drivers controlling the presence/absence of parasites with complex life cycles in a sentinel, the common killifish Fundulus heteroclitus. Parasite communities were classified from 480 individuals representing 15 fish from 4 distinct marsh sites in each of 4 consecutive seasons between 2006 and 2007. Abiotic parameters were recorded at continuous water monitoring stations located at each of the 4 sites. Classification trees identified the presence of benthic invertebrate species (Gammarus sp. and Littorina sp.) as the most important variables in determining parasite presence: secondary splitters were dominated by abiotic variables including conductance, pH and temperature. Seventy percent of hosts were successfully classified into the correct category (infected/uninfected) based on only these criteria. The presence of competent definitive hosts was not considered to be an important explanatory variable. These data suggest that the most important determinant of the presence of these parasite populations in the common killifish is the availability of diverse communities of benthic invertebrates.


2017 ◽  
Vol 1 (6) ◽  
pp. 651-657
Author(s):  
Rafael Toledo ◽  
Bernard Fried

The class Trematoda is the largest group of Platyhelminths and includes two subclasses: Aspidogastrea and Digenea. Trematodes, and particularly Digeneans, is a large group of organisms with significant medical and veterinary interest. Over 100 species of digenetic trematodes have been reported infecting humans. Although the significant mortality and morbidity that some of these infections cause, they are among the most neglected tropical diseases. Apart from their impact in public and animal health, the Digenea constitutes an intriguing group of organisms that has a vast interest in experimental biology. Systematics and taxonomy of this group constitute a challenge for biologists in relation to the difficulty entailed in the establishment of phylogenetic relationships between trematodes and the determination of valid diagnostic features. Moreover, their complex life cycles, using at least two hosts and alternating free-living and parasitic stages or sexual and asexual multiplication, constitute a paradigm of how organisms can evolve to become adapted to different biotic and abiotic environments to enhance survival. In this review, we briefly summarize the major features of trematodes in relation to both biological and medical areas.


2016 ◽  
Vol 61 (4) ◽  
Author(s):  
Michael R. Zimmermann ◽  
Kyle E. Luth ◽  
Gerald W. Esch

AbstractDigenetic trematodes have complex life cycles involving multiple hosts and free-living larval stages. Some species have 2 lar-val stages that infect snails, with miracidia and cercariae using these molluscs as first and second intermediate hosts, respec-tively. Although both larval stages may infect the same snail species, this is accomplished using different chemical cues and may be influenced by different biotic and abiotic factors. Significant differences in the infection patterns of these parasitic stages regarding host size and density were observed in 2 separate field studies. The prevalence of sporocysts/rediae and mean abundance of


Parasitology ◽  
2007 ◽  
Vol 134 (12) ◽  
pp. 1839-1847 ◽  
Author(s):  
N. FRANCESCHI ◽  
T. RIGAUD ◽  
Y. MORET ◽  
F. HERVANT ◽  
L. BOLLACHE

SUMMARYSome parasites with complex life-cycles are able to manipulate the behaviour of their intermediate hosts in a way that increases their transmission to the next host. Gammarids infected by the tapeworm Cyathocephalus truncatus (Cestoda: Spathebothriidea) are known to be more predated by fish than uninfected ones, but potential behavioural manipulation by the parasite has never been investigated. In this study, we tested the hypothesis that C. truncatus is able to manipulate the behaviour of one of its intermediate hosts, Gammarus pulex (Crustacea: Amphipoda). To assess if any behavioural change was linked to other phenotypic alterations, we also measured the immunity of infected and uninfected individuals and investigated the pathogenic effects of the parasite. Infected gammarids were significantly less photophobic than uninfected ones, but no effect of infection on the level of immune defence was found. The results on survival, swimming activity and oxygen consumption suggest that the parasite also has various pathogenic effects. However, the alteration in host phototaxis was not correlated to some of these pathogenic effects. Therefore, we propose that the modification in host reaction to light is a behavioural manipulation, explaining the previously observed increase of gammarid predation rate.


2012 ◽  
Vol 22 (2) ◽  
pp. 121-139 ◽  
Author(s):  
Pierre Petitgas ◽  
Adriaan D. Rijnsdorp ◽  
Mark Dickey-Collas ◽  
Georg H. Engelhard ◽  
Myron A. Peck ◽  
...  

2013 ◽  
Vol 181 (1) ◽  
pp. 39-51 ◽  
Author(s):  
Daniel P. Benesh ◽  
James C. Chubb ◽  
Geoff A. Parker

Parasitology ◽  
2016 ◽  
Vol 143 (14) ◽  
pp. 1824-1846 ◽  
Author(s):  
DANIEL P. BENESH

SUMMARYComplex life cycles are common in free-living and parasitic organisms alike. The adaptive decoupling hypothesis postulates that separate life cycle stages have a degree of developmental and genetic autonomy, allowing them to be independently optimized for dissimilar, competing tasks. That is, complex life cycles evolved to facilitate functional specialization. Here, I review the connections between the different stages in parasite life cycles. I first examine evolutionary connections between life stages, such as the genetic coupling of parasite performance in consecutive hosts, the interspecific correlations between traits expressed in different hosts, and the developmental and functional obstacles to stage loss. Then, I evaluate how environmental factors link life stages through carryover effects, where stressful larval conditions impact parasites even after transmission to a new host. There is evidence for both autonomy and integration across stages, so the relevant question becomes how integrated are parasite life cycles and through what mechanisms? By highlighting how genetics, development, selection and the environment can lead to interdependencies among successive life stages, I wish to promote a holistic approach to studying complex life cycle parasites and emphasize that what happens in one stage is potentially highly relevant for later stages.


2021 ◽  
Author(s):  
Ben Schultz

Free-living parasite stages are important but often overlooked components of ecosystems, especially their role(s) in food webs. Trematode parasites have complex life cycles that include a motile transmission phase, cercariae, that are produced in great quantities within aquatic snail hosts and join the zooplankton community after emerging. Here I examined how cercariae presence affected the population abundance of a common freshwater zooplanktonic animal (Daphnia) when predators were present. I also sought to determine the pathways taken by cercariae-derived carbon within a model freshwater food web by using the stable isotope 13C as a tracer. I found that Daphnia population abundance positively benefitted from cercariae presence when larval dragonfly predators were present, serving as alternate prey. I also found that 13C was an effective tool to track the flow of cercarial carbon, demonstrating high consumption by benthic consumers, as well as the utility of this method for use in future studies.


Parasitology ◽  
1994 ◽  
Vol 109 (S1) ◽  
pp. S31-S39 ◽  
Author(s):  
J. G. Rea ◽  
S. W. B. Irwin

SUMMARYHost location by parasites can be achieved by either active or passive mechanisms. In spite of their significance, the efficacy of these methods has been little researched. High fecundity in parasites is discussed in terms of the role it plays in dispersal and transmission. Some concepts developed by mainstream behavioural ecologists are outlined and their relevance to parasitology is indicated. ‘Reproductive value’ is recommended as an appropriate measure of the costs and benefits of behavioural acts. Although costs of reproduction have been rarely studied in parasites, they are likely to occur in cosexual insects, nematodes and crustaceans. Experiments using captive hosts and/orin vitrocultivation could help in the construction of realistic optimality models. We suggest that r- and K-selection theory could assist in the study of the evolution of parasite behaviour. We discuss how parasite populations are dispersed and controlled and consider the implications of overdispersion. WTe outline three sources of signals to which parasites may respond and suggest that understanding evolutionary mechanisms and community organisation of parasites and hosts requires evaluation of fundamental behavioural responses to environmental signals. The study of closely related groups of parasites and their hosts may advance our knowledge of the evolution of parasite life cycles and the evolutionary costs and benefits of behavioural acts.


Sign in / Sign up

Export Citation Format

Share Document