Effects of rubber cultivation on biodiversity in the Mekong Region.

Author(s):  
He Pia He Pia

Abstract In the Mekong Region, the expansion of rubber plantations is a major threat to the remaining natural forests and has led to a considerable degradation of biodiversity. The shift from traditional agriculture to rubber cultivation additionally reduced landscape and agricultural system diversity and with this, the availability of potentially useful habitat types for species originating from natural forest. In most cases, monoculture rubber plantations showed to harbour less than half of the species richness in various plant and animal groups compared with natural forest, and often it was found or being assumed that many of these species are unable to exist permanently in rubber plantations. There is clear evidence that the existence natural forest area is essential for the conservation of large portions of native forest species in rubber-dominated landscapes. Alteration of rubber monoculture land use can only contribute effectively to species conservation if natural forest plots remain. Furthermore, suggested restoration concepts such as the conversion of rubber plantations into forest on marginal sites and land-sharing approaches are currently only vaguely described, and their contribution to the conservation of native forest species remains uncertain. In addition, modalities of stakeholder involvement, economic compensation and ecologically reasonable implementation of such measures are still unexplained. As an ecologically reasonable and economically feasible method to improve species diversity in rubber monoculture plantations, we suggest the promotion of natural undergrowth vegetation to enlarge suitable habitat structures in connection with natural forest. This can be reached through the cease of weeding and herbicide application and potentially through the cultivation of useful wild plants.

2009 ◽  
Vol 36 (2) ◽  
pp. 171 ◽  
Author(s):  
S. Goda Sporn ◽  
Merijn M. Bos ◽  
Monika Hoffstätter-Müncheberg ◽  
Michael Kessler ◽  
S. Robbert Gradstein

Management intensification in cultivated, tropical forests drives changes in the microclimate that can threaten native forest flora and fauna. In this study, we use epiphytic bryophytes, known to be sensitive to microclimatic changes due to their lack of a protective cuticle and the exposed habitat, to investigate the predictive power of microclimate for changes in species richness and composition. Bryophytes were sampled from understory trees in natural forest and cacao (Theobroma cacao L.) trees in two types of cacao agroforests (natural shade trees and planted shade trees) in Central Sulawesi, Indonesia. The microclimate in the agroforests was characterised by low air humidity and high air temperature during the afternoon. Bryophyte species richness did not differ between habitat types but species composition changed markedly from the natural forest to the cacao agroforests. Although no correlation between species richness and microclimate values could be found, a series of matrix-based analyses revealed a significantly positive relationship between similarities in species composition and in maximum values for temperature and minimum values for humidity, which suggests that microclimatic changes are a good predictor for high turnover of bryophyte community composition from natural forests to cacao agroforests.


Forests ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 399
Author(s):  
Chenchen Zhang ◽  
Chong Huang ◽  
He Li ◽  
Qingsheng Liu ◽  
Jing Li ◽  
...  

The expansion of rubber (Hevea brasiliensis) plantations has been a critical driver for the rapid transformation of tropical forests, especially in Thailand. Rubber plantation mapping provides basic information for surveying resources, updating forest subplot information, logging, and managing the forest. However, due to the diversity of stand structure, complexity of the forest growth environment, and the similarity of spectral characteristics between rubber trees and natural forests, it is difficult to discriminate rubber plantation from natural forest using only spectral information. This study evaluated the validity of textural features for rubber plantation recognition at different spatial resolutions using GaoFen-1 (GF-1), Sentinel-2, and Landsat 8 optical data. C-band Sentinel-1 10 m imagery was first used to map forests (including both rubber plantations and natural forests) and non-forests, then the pixels identified as forests in the Sentinel-1 imagery were compared with GF-1, Sentinel-2, and Landsat 8 images to separate rubber plantations and natural forest using two different approaches: a method based on spectral information characteristics only and a method combining spectral and textural features. In addition, we extracted textural features of different window sizes (3 × 3 to 31 × 31) and analyzed the influence of window size on the separability of rubber plantations and natural forests. Our major findings include: (1) the suitable texture extraction window sizes of GF-1, Sentinel-2, and Landsat 8 are 31 × 31, 11 × 11 to 15 × 15, and 3 × 3 to 7 × 7, respectively; (2) correlation (COR) is a robust textural feature in remote sensing images with different resolutions; and (3) compared with classification by spectral information only, the producer’s accuracy of rubber plantations based on GF-1, Sentinel-2, and Landsat 8 was improved by 8.04%, 9.44%, and 8.74%, respectively, and the user’s accuracy was increased by 4.63%, 4.54%, and 6.75%, respectively, when the textural features were introduced. These results demonstrate that the method combining textural features has great potential in delineating rubber plantations.


2007 ◽  
Vol 31 (2) ◽  
pp. 287-298 ◽  
Author(s):  
Antonio Carlos da Gama-Rodrigues ◽  
Nairam Félix de Barros ◽  
Nicholas Brian Comerford

The objective of this paper is to study selected components of the nutrient cycle of pure and mixed stands of native forest species of Atlantic Forest in southeastern Brazil. Tree diameter, height, above-ground biomass, and nutrient content were determined in 22-year-old stands. Litterfall, litter decomposition, and nutrient concentration were evaluated from August 1994 to July 1995. The following species were studied: Peltogyne angustiflora, Centrolobium robustum, Arapatiella psilophylla, Sclerolobium chrysophyllum, Cordia trichotoma, Macrolobium latifolium. The litter of a natural forest and a 40-year-old naturally regenerated second-growth forest was sampled as well. The mixed-species outmatched pure stands in height, stem volume and total biomass (29.4 % more). The greatest amount of forest litter was observed in the natural forest (9.3 Mg ha-1), followed by the mixed-species stand (7.6 Mg ha-1) and secondary forest (7.3 Mg ha-1), and least litterfall was measured in the pure C. robustum stand (5.5 Mg ha-1). Litterfall seasonality varied among species in pure stands (CV from 44.7 to 91.4 %), unlike litterfall in the mixed-tree stand, where the variation was lower (CV 31.2 %). In the natural and second-growth forest, litterfall varied by 57.8 and 34.0 %, respectively. The annual rate of nutrient return via litterfall varied widely among forest ecosystems. Differences were detected between forest ecosystems in both the litter accumulation and quantity of litterlayer nutrients. The highest mean nutrient accumulation in above-ground biomass was observed in mixed-species stands. The total nutrient accumulation (N + P + K+ Ca + Mg) ranged from 0.97 to 1.93 kg tree-1 in pure stands, and from 1.21 to 2.63 kg tree-1 in mixed-species stands. Soil fertility under mixed-species stands (0-10 cm) was intermediate between the primary forest and pure-stand systems. The litterfall rate of native forest species in a mixed-species system is more constant, resulting in a more continuous decomposition rate. Consequently, both nutrient availability and quantity of organic matter in the soil are higher and the production system ecologically more sustainable.


Author(s):  
Adam S. Forbes ◽  
David A. Norton ◽  
Fiona E. Carswell

Background: We investigated the long-term potential of non-harvest Pinus radiata plantations for the facilitation and restoration of a natural forest community dominated by indigenous woody species. We investigated the relationship between indigenous regeneration and light levels and the hypothesis that proximity to indigenous seed sources is critical. We studied nine Pinus radiata stands of different ages located within Kinleith Forest, which is a large (ca. 66 000 ha) commercial exotic plantation forest located in New Zealand’s central North Island. Methods: We constructed a chronosequence of P. radiata plantation stands aged 2–89 years to represent long-term natural forest regeneration following plantation establishment. We surveyed structural, compositional and contextual aspects of this secondary succession and compared these results with an old-growth indigenous forest reference site located within the study area. Results: The exotic P. radiata canopy facilitated a regeneration trajectory characterised by shade-tolerant indigenous forest species. We found that the structure and composition of P. radiata understories were strongly influenced by stand age and proximity to indigenous forest. Stand age was important from the perspective of creating shaded conditions for the establishment of shade-tolerant woody forest species. Our results suggest that proximal indigenous forest was required for the consistent natural establishment of larger-fruited, bird-dispersed mature forest canopy species in P. radiata plantations. Conclusions: Our results showed that, even at ecologically isolated sites, the microclimate conditions created by plantation Pinus radiata stands supported a suite of readily-dispersed indigenous forest plants. Based on these results we suggest that non-harvest P. radiata stands provide an important opportunity for the restoration of indigenous forest communities in New Zealand’s production landscapes. Where restoration of forest composition similar to old-growth is the restoration objective, however, interventions might be necessary to direct and accelerate the secondary forest succession. Further replicated study is required into the relationship between native forest proximity and understorey regeneration patterns.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kisei R. Tanaka ◽  
Kyle S. Van Houtan ◽  
Eric Mailander ◽  
Beatriz S. Dias ◽  
Carol Galginaitis ◽  
...  

AbstractDuring the 2014–2016 North Pacific marine heatwave, unprecedented sightings of juvenile white sharks (Carcharodon carcharias) emerged in central California. These records contradicted the species established life history, where juveniles remain in warmer waters in the southern California Current. This spatial shift is significant as it creates potential conflicts with commercial fisheries, protected species conservation, and public safety concerns. Here, we integrate community science, photogrammetry, biologging, and mesoscale climate data to describe and explain this phenomenon. We find a dramatic increase in white sharks from 2014 to 2019 in Monterey Bay that was overwhelmingly comprised of juvenile sharks < 2.5 m in total body length. Next, we derived thermal preferences from 22 million tag measurements of 14 juvenile sharks and use this to map the cold limit of their range. Consistent with historical records, the position of this cold edge averaged 34° N from 1982 to 2013 but jumped to 38.5° during the 2014–2016 marine heat wave. In addition to a poleward shift, thermally suitable habitat for juvenile sharks declined 223.2 km2 year−1 from 1982 to 2019 and was lowest in 2015 at the peak of the heatwave. In addition to advancing the adaptive management of this apex marine predator, we discuss this opportunity to engage public on climate change through marine megafauna.


FLORESTA ◽  
2014 ◽  
Vol 44 (4) ◽  
pp. 637
Author(s):  
Karen C.P. da Costa ◽  
João B.S. Ferraz ◽  
Rodrigo P. Bastos ◽  
Tatiane Da S. Reis ◽  
Marciel J. Ferreira ◽  
...  

As estratégias de distribuição de biomassa e nutrientes utilizadas pelas espécies florestais podem refletir sua capacidade de sobrevivência em plantios sobre áreas degradadas. O objetivo deste estudo foi quantificar os estoques de biomassa e nutrientes nos compartimentos arbóreos de Parkia multijuga, Parkia nitida e Parkia pendula em plantios sobre área degradada em Manaus, AM. A biomassa foi determinada pelo método destrutivo em seis árvores de cada espécie, que foram compartimentadas em: folhas, galhos finos (Ø <10 cm), galhos grossos (Ø ≥10 cm), fuste, raízes médias (2 mm ≤ Ø <5 cm) e raízes grossas (Ø ≥5 cm). Aos quatro anos, Parkia multijuga exibiu 60% do total de biomassa nos compartimentos aéreos e 40% nos subterrâneos. Parkia nitida exibiu 84% nos compartimentos aéreos e apenas 16% nos subterrâneos. Parkia pendula exibiu 67% nos compartimentos aéreos e 33% nos subterrâneos. A ordem de acúmulo de macronutrientes nos compartimentos foi: N > Ca > K > Mg > P. O fato de Parkia multijuga adotar estratégias de alocação de biomassa e nutrientes que favorecerão seu desempenho sobre sítios com baixa disponibilidade de recursos sustenta sua indicação para a composição de programas de reflorestamento em áreas degradadas na Amazônia.Palavras-chave: Espécies florestais nativas; nutrição florestal; reflorestamento; restauração. AbstractBiomass and nutrients in three species of Parkia plantings on degraded area in Central Amazon. Biomass and nutrients partitioning strategies in tree species may reflect their ability to survive in plantations on degraded areas. The objective of this study was to investigate the content of biomass and nutrients in tree components of Parkia multijuga, Parkia nitida and Parkia pendula on plantings in degraded area in Manaus, AM. The biomass was determined by the harvest method in six trees of each species, which were subdivided into leaves, fine branches (Ø < 10 cm), coarse branches (Ø ≥10 cm), stem wood, medium roots (≤ 2 mm Ø < 5 cm ) and coarse roots (Ø ≥ 5 cm). At 4 years, Parkia multijuga allocated 60% of the total biomass to above-ground components and 40% to below-ground. Parkia nitida allocated 84% to above-ground and 16% to below-ground. Parkia pendula allocated 67% to above-ground components and 33% to below-ground. The order of the nutrient accumulation in tree compartments was: N > Ca > K > Mg > P. Parkia multijuga, by adopting better strategies of distribution of biomass and nutrients, it is a recommended species for reforestation programs on degraded sites in the Amazon.Keywords: Native forest species; forest nutrition; reforestation; restoration.


2016 ◽  
Vol 40 (2) ◽  
pp. 245-254 ◽  
Author(s):  
Luciana de Moura Gonzaga ◽  
Sarah Santos da Silva ◽  
Silvane de Almeida Campos ◽  
Rodrigo de Paula Ferreira ◽  
André Narvaes da Rocha Campos ◽  
...  

ABSTRACT The objective of this study was to evaluate organic substrates in the production of canafistula (Peltophorum dubium) (Spreng.) Taub, cutieira (Joannesiaprinceps Vell.), jatoba (Hymenaea courbaril L.) and rubber tree (Hevea brasiliensis M. Arg.) seedlings, native trees with potential use in forest restoration programs. The design was completely randomized with 10 substrate formulations with 4 repetitions of 3 plants for the four species. The evaluated substrates consisted of soil, bovine manure (BM), poultry manure (PM), chemical fertilizer (CF) and sand, in different proportions. The experiment was concluded at the end of 180 days for canafistula, cutieira and rubber and 210 days for jatoba. At the end of these periods, the root (RDM), shoot (SDM) and total (TDM) the dry matters of the seedlings were determined. Quantification of AMF spores and normalization between samples through SPORES/RDM correction were also performed. The Scott-Knott test at 5% probability was applied. Regarding biomass production, only canafistula had significant difference among the tested substrates. In relation to sporulation, the highest values were observed in cutieira and rubber tree in substrate containing PM. The substrates composed of 40 or 50% soil + 20% sand + 30% or 40 PM for canafistula; 50% soil + 20% sand + 30% PM for cutieira; and for jatoba and rubber tree 60% soil + 20% sand + 20% PM, enabled the best results in terms of biomass production in seedlings and AMF sporulation.


2020 ◽  
Author(s):  
Christian Zúñiga-Méndez ◽  
Victor Meza-Picado ◽  
Sebastian Ugalde-Alfaro ◽  
Jhonny Méndez-Gamboa

Abstract Background: Part of the success of forest conservation programs is due to the economic sustainability they can provide to owners of forest resources, and how these management mechanisms can be used within an increasingly aggressive productive landscape matrix. However, there are currently no precise or up-to-date data on the economic relationships between land uses and their respective productive activities. This study designed a model to evaluate the opportunity cost of natural forest management, taking as a reference the primary productive activities that take place within the Arenal-Huetar Norte Conservation Area, in Costa Rica. Methods: Profitability data from 24 sites in natural forests with a forest management plan approved by the State Forest Administration was used, as well as geographic and productive information on alternative land uses. Results: Based on these data, an opportunity cost map was generated which shows a marked segregation of the forests into two main areas: a) a high-opportunity cost area, located south of the study area; and b) a medium-low opportunity cost area, to the center-north of the study area. Conclusions: It is concluded that ideal areas for timber harvesting are currently restricted to places far from the market, and with low opportunity costs (ranging between ≤ $0 ha -1 year -1 and $500 ha -1 year -1 ).


2021 ◽  
Vol 6 (3) ◽  
pp. 67328
Author(s):  
Nur Apriatun Nafisah ◽  
R.C.Hidayat Soesilohadi

Petungkriyono forest is a tropical rainforest with high biodiversity. The increasing tourism activities in Petungkriyono lead to land conversion. Dragonfly (order Odonata) is a good bioindicator for aquatic and terrestrial. This study aimed to compare the community structure of Odonata in natural forests and tourist sites. The method of collecting imago Odonata was done by direct searching, samples were captured using sweep netting. The results showed that the dragonflies found in all locations consisted of the same family, 2 families (Gomphidae and Libellulidae) from the suborder Anisoptera and 6 families (Calopterygidae, Chlorocyphidae, Coenagrionidae, Euphaidae Platycnemididae, and Platystictidae) from the suborder Zygoptera. The total species of dragonflies found in Sokokembang were 15 species with a total of 293 individuals, Tirta Muncar 13 species of 287 individuals, Karanggondang 17 species of 276 individuals, and Curug Lawe 14 species of 242 individuals. The highest relative abundance of individuals was in the natural forest of Sokokembang is Drepanosticta spatulifera (26.28%) and in Karanggondang Vestalis luctuosa (24.64%), while in the tourist forests of Tirta Muncar and Curug Lawe were Euphaea variegata (34.84% and 28.51 %). The structure of the Odonata community is based on the Shannon-Wiener diversity index in the natural forests of Sokokembang (2.18) and Karanggondang (2.21) at the tourist sites of Tirta Muncar (1.84) and Curug Lawe (2.11). The results showed that the structure of the Odonata community based on the level of the diversity index value, evenness index, and dominance index in natural forests and tourist sites in Petungkriyono forest was not significantly different. 


2019 ◽  
Vol 49 ◽  
Author(s):  
Lisa A. Berndt ◽  
Eckehard G. Brockerhoff

Background: Land cover changes during the recent history of New Zealand have had a major impact on its largely endemic and iconic biodiversity. As in many other countries, large areas of native forest have been replaced by other land cover and are now in exotic pasture grassland or plantation forest. Ground beetles (Carabidae) are often used as ecological indicators, they provide ecosystem services such as pest control, and some species are endangered. However, few studies in New Zealand have assessed the habitat value for carabid beetles of natural forest, managed regenerating natural forest, pine plantation forest and pasture. Methods: We compared the carabid beetle assemblages of natural forest of Nothofagus solandri var solandri (also known as Fuscospora solandri or black beech), regenerating N. solandri forest managed for timber production, exotic pine plantation forest and exotic pasture, using pitfall traps. The study was conducted at Woodside Forest in the foothills of the Southern Alps, North Canterbury, New Zealand, close to an area where the critically endangered carabid Holcaspis brevicula was found. Results: A total of 1192 carabid individuals from 23 species were caught during the study. All but two species were native to New Zealand, with the exotic species present only in low numbers and one of these only in the pasture habitat. Carabid relative abundance and the number of species was highest in the pine plantation, where a total of 15 species were caught; however, rarefied species richness did not differ significantly between habitats. The sampled carabid beetle assemblages were similar across the three forested habitat types but differed significantly from the pasture assemblages based on unconstrained and canonical analyses of principal coordinates. Holcaspis brevicula was not detected in this area. Conclusions: Our results show that managed or exotic habitats may provide habitat to species-rich carabid assemblages although some native species occur only in natural, undisturbed vegetation. Nevertheless, it is important to acknowledge the potential contribution of these land uses and land cover types to the conservation of native biodiversity and to consider how these can be managed to maximise conservation opportunities.


Sign in / Sign up

Export Citation Format

Share Document