Approximal plaque pH lowering after sugar intake in a periodontally infected dentition

Author(s):  
S. G. Rüdiger ◽  
A. Carlén
Keyword(s):  
2017 ◽  
Vol 68 (11) ◽  
pp. 2691-2693
Author(s):  
Krisztina Martha ◽  
Cristina Bica ◽  
Edva Anna Frunda

By the end of the 60�s, the theory that refined carbohydrates promotes the absorption of saccharolytic Gram-positive microbial species on the tooth surfaces has become generally. Mutans streptococci (Streptococcus mutans and Streptococcus sobrinus) were key players in this theory. On agar plates, Str. mutans produces small, circular colonies, in the presence of glucose, and in the presence of sucrose large, sticky, gelatinous colonies. This gelatinous texture is due to the shell material: mutant 1 � 3 glucose polymers and dextran 1 �! 6 glucose polymers. Str. mutans are able to survive in the oral cavity with a pH lower than 5.5. That is why consecutive multiple sugar intake promotes the colonization of Str. mutans, which results in dental caries in stagnant zones. As oral pH is continuously shifted to acid, more acid-resistant bacteria appear. Our aim was to identify species in infant-mother pair gingival crevicular bacterial flora, which can be detected on high-sucrose culture media and to underline the jeopardy of vertical oral contamination from mother to infant.


2021 ◽  
Vol 9 (1) ◽  
pp. e001939
Author(s):  
Francesco Franchi ◽  
Dmitry M Yaranov ◽  
Fabiana Rollini ◽  
Andrea Rivas ◽  
Jose Rivas Rios ◽  
...  

IntroductionCurrent dietary guidelines recommend limiting sugar intake for the prevention of diabetes mellitus (DM). Reduction in sugar intake may require sugar substitutes. Among these, D-allulose is a non-calorie rare monosaccharide with 70% sweetness of sucrose, which has shown anti-DM effects in Asian populations. However, there is limited data on the effects of D-allulose in other populations, including Westerners.Research design and methodsThis was a prospective, randomized, double-blind, placebo-controlled, crossover study conducted in 30 subjects without DM. Study participants were given a standard oral (50 g) sucrose load and randomized to placebo or escalating doses of D-allulose (2.5, 5.0, 7.5, 10.0 g). Subjects crossed-over to the alternate study treatment after 7–14 days of wash out. Plasma glucose and insulin levels were measured at five time points: before and at 30, 60, 90 and 120 min after ingestion.ResultsD-allulose was associated with a dose-dependent reduction of plasma glucose at 30 min compared with placebo. In particular, glucose was significantly lower with the 7.5 g (mean difference: 11; 95% CI 3 to 19; p=0.005) and 10 g (mean difference: 12; 95% CI 4 to 20; p=0.002) doses. Although glucose was not reduced at the other time points, there was a dose-dependent reduction in glucose excursion compared with placebo, which was significant with the 10 g dose (p=0.023). Accordingly, at 30 min D-allulose was associated with a trend towards lower insulin levels compared with placebo, which was significant with the 10 g dose (mean difference: 14; 95% CI 4 to 25; p=0.006). D-allulose did not reduce insulin at any other time point, but there was a significant dose-dependent reduction in insulin excursion compared with placebo (p=0.028), which was significant with the 10 g dose (p=0.002).ConclusionsThis is the largest study assessing the effects of D-allulose in Westerners demonstrating an early dose-dependent reduction in plasma glucose and insulin levels as well as decreased postprandial glucose and insulin excursion in subjects without DM. These pilot observations set the basis for large-scale investigations to support the anti-DM effects of D-allulose.Trial registration numberNCT02714413.


Children ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 290
Author(s):  
Ahlia Sekkarie ◽  
Jean A. Welsh ◽  
Kate Northstone ◽  
Aryeh D. Stein ◽  
Usha Ramakrishnan ◽  
...  

(1) Background: High sugar intake is prevalent among children and is associated with non-alcoholic fatty liver disease (NAFLD). The purpose of this study is to determine if a high intake of free sugars and sugary beverages (SB) in childhood is associated with NAFLD in adulthood; (2) Methods: At 24 years, 3095 participants were assessed for severe hepatic steatosis (controlled attenuation parameter >280 dB/m) and had dietary data collected via a food frequency questionnaire at age three years. Multiple logistic regression models adjusted for total energy intake, potential confounders, and a mediator (offspring body mass index (BMI) at 24 years); (3) Results: Per quintile increase of free sugar intake association with severe hepatic steatosis at 24 years after adjusting for total energy was odds ratio (OR):1.07 (95% CL: 0.99–1.17). Comparing the lowest vs. the highest free sugar consumers, the association was OR:1.28 (95% CL: 0.88–1.85) and 1.14 (0.72, 1.82) after full adjustment. The OR for high SB consumption (>2/day) compared to <1/day was 1.23 (95% CL: 0.82–1.84) and OR: 0.98 (95% CL: 0.60–1.60) after full adjustment; (4) Conclusions: High free sugar and SB intake at three years were positively but weakly associated with severe hepatic steatosis at 24 years. These associations were completely attenuated after adjusting for confounders and 24-year BMI.


Author(s):  
Angela Stillhart ◽  
Florian J. Wegehaupt ◽  
Ina Nitschke ◽  
Thomas Attin ◽  
Murali Srinivasan

Nutrients ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 2711
Author(s):  
Fiona S. Atkinson ◽  
Jouhrah Hussain Khan ◽  
Jennie C. Brand-Miller ◽  
Joerg Eberhard

Sugary carbohydrate foods have long been associated with increased risk of dental caries formation, but the dental health impact of starchy carbohydrates, particularly those with a high glycemic index (GI), has not been well examined. Aim: To investigate the effect of different starchy foods varying in their GI, on acute changes in dental plaque pH. Methods: In a series of sub-studies in healthy adults, common starchy carbohydrate foods, including white bread, instant mashed potatoes, canned chickpeas, pasta, breakfast cereals, white rice, and an oral glucose solution were consumed in fixed 25 g available carbohydrate portions. The change in dental plaque pH was assessed postprandially over 1 h and capillary plasma glucose was measured at regular intervals over 2 h. Results: Higher GI starchy foods produced greater acute plaque pH decreases and larger overall postprandial glucose responses compared to lower GI starchy foods (white bread compared with canned chickpeas: −1.5 vs. −0.7 pH units, p = 0.001, and 99 ± 8 mmol/L min vs. 47 ± 7 mmol/L min, p = 0.026). Controlling for other food factors (food form and nutritional composition), lower GI versions of matched food pairs produced smaller plaque pH excursions compared to higher GI versions of the same food. Using linear regression analysis, the GI value of starchy carbohydrate foods explained 60% of the variation in maximum plaque pH nadir and 64% of the variation in overall acute dental plaque pH excursion (p < 0.01). Conclusion: The findings imply that starchy foods, in particular those with a higher GI, may play a role in increasing the risk of dental caries.


2020 ◽  
Vol 11 (6) ◽  
pp. 1429-1436
Author(s):  
Jimmy Chun Yu Louie

ABSTRACT Misreporting of added sugar intake has been the major criticism of studies linking high added sugar consumption to adverse health outcomes. Despite the advancement in dietary assessment methodologies, the bias introduced by self-reporting can never be completely eliminated. The search for an objective biomarker for total added sugar intake has therefore been a topic of interest. In this article, the reasons this search may be a wild goose chase will be outlined and discussed. The limitations and inability of the 2 candidate biomarkers, namely urinary sucrose and fructose and δ¹³C isotope, which are based on the 2 only possible ways (i.e., difference in metabolism and plant sources) to identify added sugar based on current knowledge in human physiology and food and nutritional sciences, are discussed in detail. Validation studies have shown that these 2 candidate biomarkers are unlikely to be suitable for use as a predictive or calibration biomarker for total added sugar intake. Unless advancement in our understanding in human physiology and food and nutritional sciences leads to new potential ways to distinguish between naturally occurring and added sugars, it is extremely unlikely that any accurate objective added sugar biomarker could be found. It may be time to stop the futile effort in searching for such a biomarker, and resources may be better spent on further improving and innovating dietary assessment methods to minimize the bias introduced by self-reporting.


Sign in / Sign up

Export Citation Format

Share Document