Characterization of the Particulate Matter and Carbonaceous Particles Produced by Biomass Combustion

2015 ◽  
Vol 49 (7) ◽  
pp. 1102-1113 ◽  
Author(s):  
Angela T. Zosima ◽  
Maria Ochsenkühn-Petropoulou
Author(s):  
Aline Krindges ◽  
Vanusca Dalosto Jahno ◽  
Fernando Morisso

Incorporation studies of particles in different substrates with herbal assets growing. The objective of this work was the preparation and characterization of micro/nanoparticles containing cymbopogon nardus essential oil; and the incorporation of them on bacterial cellulose. For the development of the membranes was used the static culture medium and for the preparation of micro/nanoparticles was used the nanoprecipitation methodology. The incorporation of micro/nanoparticles was performed on samples of bacterial cellulose in wet and dry form. For the characterization of micro/nanoparticles were carried out analysis of SEM, zeta potential and particle size. For the verification of the incorporation of particulate matter in cellulose, analyses were conducted of SEM and FTIR. The results showed that it is possible the production and incorporation of micro/nanoparticles containing essential oil in bacterial cellulose membranes in wet form with ethanol.


2015 ◽  
Vol 92 ◽  
pp. 432-439 ◽  
Author(s):  
Marian Fe Theresa C. Lomboy ◽  
Leni L. Quirit ◽  
Victorio B. Molina ◽  
Godofreda V. Dalmacion ◽  
Joel D. Schwartz ◽  
...  

2001 ◽  
Vol 32 ◽  
pp. 353-354
Author(s):  
E. BRÜGGEMANN ◽  
T. GNAUK ◽  
K. MULLER ◽  
H. HERRMANN

2021 ◽  
Vol 96 ◽  
pp. 11-18 ◽  
Author(s):  
Yishu Xu ◽  
Xiaowei Liu ◽  
Jiuxin Qi ◽  
Tianpeng Zhang ◽  
Jingying Xu ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3079
Author(s):  
Beata Jaworska ◽  
Dominika Stańczak ◽  
Joanna Tarańska ◽  
Jerzy Jaworski

The generation of energy for the needs of the population is currently a problem. In consideration of that, the biomass combustion process has started to be implemented as a new source of energy. The dynamic increase in the use of biomass for energy generation also resulted in the formation of waste in the form of fly ash. This paper presents an efficient way to manage this troublesome material in the polymer–cement composites (PCC), which have investigated to a lesser extent. The research outlined in this article consists of the characterization of biomass fly ash (BFA) as well as PCC containing this waste. The characteristics of PCC with BFA after 3, 7, 14, and 28 days of curing were analyzed. Our main findings are that biomass fly ash is suitable as a mineral additive in polymer–cement composites. The most interesting result is that the addition of biomass fly ash did not affect the rheological properties of the polymer–cement mortars, but it especially influenced its compressive strength. Most importantly, our findings can help prevent this byproduct from being placed in landfills, prevent the mining of new raw materials, and promote the manufacture of durable building materials.


1996 ◽  
Vol 104 ◽  
pp. 687 ◽  
Author(s):  
K. Savela ◽  
M. J. Kohan ◽  
D. Walsh ◽  
F. P. Perera ◽  
K. Hemminki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document