scholarly journals Changes in Stone CurlewBurhinus oedicnemusdistribution and abundance and vegetation height on chalk grassland at Porton Down, Wiltshire

Bird Study ◽  
1995 ◽  
Vol 42 (3) ◽  
pp. 177-181 ◽  
Author(s):  
R. E. Green ◽  
C. R. Taylor
Author(s):  
M. P. Hayes ◽  
E. Ashe-Jepson ◽  
G. E. Hitchcock ◽  
R. I. Knock ◽  
C. B. H. Lucas ◽  
...  

Abstract The Duke of Burgundy butterfly (Hamearis lucina) is known to have specific habitat requirements for its larval foodplants. However, no studies have yet investigated whether these preferences vary over time or in relation to climate, and there is a paucity of data on whether management on reserves can replicate preferred conditions. Here, we build upon existing research to confirm which characteristics Duke of Burgundy prefer for their larval foodplants, whether preferences remain consistent across years, and whether conservation management on reserves can replicate these conditions. Fieldwork was carried out at Totternhoe Quarry Reserve, a chalk grassland site in Bedfordshire, UK. Confirming previous research, we found that large Primula plants in dense patches were chosen for oviposition, but that once chosen there was no preference to lay eggs on a plant’s largest leaf. Chosen foodplants were also more sheltered and in closer proximity to scrub than their controls. However, at a finer scale, we found little evidence for any preference based on differences in microclimate, or vegetation height immediately surrounding the plants. This suggests features that alter microclimatic conditions at a larger scale are relatively more important for determining the suitability of oviposition sites. Nearly all preferences remained consistent over time and did not vary between years. Management of scrub on the reserve was able to reproduce some preferred habitat features (high plant density), but not others (large plant size). Implications for insect conservation The consistency of findings across years, despite inter-annual variation in temperature, rainfall and number of adults, indicates that the Duke of Burgundy is conservative in its foodplant choice, highlighting its need for specific habitat management. Targeted management for foodplants could form part of a tractable set of tools to support Duke of Burgundy numbers on reserves, but a careful balance is needed to avoid scrub clearance leaving plants in sub-optimal conditions.


Author(s):  
Verena Rösch ◽  
Pascal Aloisio ◽  
Martin H. Entling

AbstractVineyards can be valuable habitats for biodiversity conservation. For example, in Rhineland-Palatinate (Germany) over a third of the state’s critically endangered Woodlark (Lullula arborea) population breeds in vineyards along the western margin of the Upper Rhine Valley. We here aim to elucidate how local ground cover management, food availability and the proximity to settlements affect territory selection by this bird species in the region. As climate, site conditions and management differ greatly from more continental or Mediterranean wine-growing areas, conditions for Woodlark conservation may differ as well.We compared 26 Woodlark territories in vineyards with 26 nearby reference areas from which Woodlarks were absent. We recorded vineyard ground cover in the inter-rows (% cover) as well as vegetation height and composition (forbs vs. grasses). Arthropods were sampled using pitfall traps, since they are the main food resource of Woodlarks during the breeding season. In addition, the distance to built-up areas was measured. The vegetation in Woodlark territories was shorter (mean 14.2 vs. 19.6 cm) and more dominated by forbs (39% vs. 27% cover) than in absence areas. The vegetation cover in the inter-rows had no effect on Woodlark territory presence or absence. Woodlarks also favoured areas with a higher abundance of arthropods (mean abundance 69.1 vs. 57.5) and a greater distance to built-up areas (mean distance 554 vs. 373 m). We conclude that to promote the Woodlark in wine-growing areas, short, forb-rich swards should be created, facilitating arthropod detectability. This is likely to require low levels of nitrogen fertilization since fertilizers favour tall-growing grasses that outcompete forbs. Pesticide applications should be kept at a minimum to enhance arthropods as the main food source for Woodlarks and their chicks. In addition, the expansion of settlements into breeding areas of Woodlarks should be avoided.


Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 205
Author(s):  
Shailes Bhattrai ◽  
Uma Karki ◽  
Sanjok Poudel

Despite the huge potential of using woodlands for small ruminant grazing in the southeast US, unmanaged understory shrubs grown beyond animals’ access minimize the utilization of such vegetation. This study aimed to determine the effect of vegetation height and diurnal period on the behavior and distribution patterns of goats and sheep in woodlands around summer. The study was conducted in six woodland plots (0.4 ha each) comprising southern pines and non-pine (non-target) plant species. Non-pine plants in each study plot were assigned to four treatments: cut to 0 m, 0.9 m, or 1.5 m from the ground level or left uncut (control). Cut plant stubs were allowed to regrow to full canopy before stocking animals. Eight Kiko wethers and five Katahdin rams were rotationally stocked in separate plots, and their diurnal (dawn–dusk) behaviors and distribution patterns were monitored when they were in each plot (three plots per animal species) around the summer of 2018. Animal behavior data were analyzed using the general linear model (GLM) procedure with multivariate analysis of variance (MANOVA) in SAS, while animal distribution pattern and weather data were analyzed in SAS using a GLM procedure and the distribution evenness index (DEI) using the Kruskal–Wallis rank-sum test in R. Level of significance was set at 5%. Both animal species visited the control area the least. Wethers browsed predominantly in areas where non-pine plants were cut to 0.9 m from the ground level, and rams grazed mostly in areas where non-pine plants were cut to the ground level, mostly during the post-midday period. Browsing was the dominant feeding behavior of wethers (39% browsing vs. 4% grazing), while rams’ feeding behavior was dominated with grazing (24% grazing vs. 12% browsing). Lying was a predominant diurnal behavior in both wethers (46%) and rams (35%), mostly during the midday period. Wethers had a higher value for DEI than rams during the morning and post-midday periods. This study established that (1) the utilization of woodland understory foliage by small ruminants can be increased by lowering plant height, and (2) both vegetation characteristics and diurnal period are important factors for influencing small ruminants’ behavior while stocked in woodlands around summer.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Víctor Fernández-García ◽  
Elena Marcos ◽  
Sara Huerta ◽  
Leonor Calvo

Abstract Background Wildfires are one of the major environmental concerns in Mediterranean ecosystems. Thus, many studies have addressed wildfire impacts on soil and vegetation in Mediterranean forests, but the linkages between these ecosystem compartments after fire are not well understood. The aim of this work is to analyze soil-vegetation relationships in Mediterranean burned forests as well as the consistency of these relationships among forests with different environmental conditions, at different times after fire, and among vegetation with different functional traits. Results Our results indicate that study site conditions play an important role in mediating soil-vegetation relationships. Likewise, we found that the nature of soil-vegetation relationships may vary over time as fire effects are less dominant in both ecosystem compartments. Despite this, we detected several common soil-vegetation relationships among study sites and times after fire. For instance, our results revealed that available P content and stoichiometry (C:P and N:P) were closely linked to vegetation growth, and particularly to the growth of trees. We found that enzymatic activities and microbial biomass were inversely related to vegetation growth rates, whereas the specific activities of soil enzymes were higher in the areas with more vegetation height and cover. Likewise, our results suggest that resprouters may influence soil properties more than seeders, the growth of seeders being more dependent on soil status. Conclusions We provide pioneer insights into how vegetation is influenced by soil, and vice-versa, in Mediterranean burned areas. Our results reflect variability in soil-vegetation relationships among study sites and time after fire, but consistent patterns between soil properties and vegetation were also detected. Our research is highly relevant to advance in forest science and could be useful to achieve efficient post-fire management.


2020 ◽  
Vol 2 (1) ◽  
pp. 23-36
Author(s):  
Syed Aamir Ali Shah ◽  
Muhammad Asif Manzoor ◽  
Abdul Bais

Forest structure estimation is very important in geological, ecological and environmental studies. It provides the basis for the carbon stock estimation and effective means of sequestration of carbon sources and sinks. Multiple parameters are used to estimate the forest structure like above ground biomass, leaf area index and diameter at breast height. Among all these parameters, vegetation height has unique standing. In addition to forest structure estimation it provides the insight into long term historical changes and the estimates of stand age of the forests as well. There are multiple techniques available to estimate the canopy height. Light detection and ranging (LiDAR) based methods, being the accurate and useful ones, are very expensive to obtain and have no global coverage. There is a need to establish a mechanism to estimate the canopy height using freely available satellite imagery like Landsat images. Multiple studies are available which contribute in this area. The majority use Landsat images with random forest models. Although random forest based models are widely used in remote sensing applications, they lack the ability to utilize the spatial association of neighboring pixels in modeling process. In this research work, we define Convolutional Neural Network based model and analyze that model for three test configurations. We replicate the random forest based setup of Grant et al., which is a similar state-of-the-art study, and compare our results and show that the convolutional neural networks (CNN) based models not only capture the spatial association of neighboring pixels but also outperform the state-of-the-art.


2013 ◽  
Vol 38 (1) ◽  
pp. 79-96 ◽  
Author(s):  
Jean-Nicolas Pradervand ◽  
Anne Dubuis ◽  
Loïc Pellissier ◽  
Antoine Guisan ◽  
Christophe Randin

Recent advances in remote sensing technologies have facilitated the generation of very high resolution (VHR) environmental data. Exploratory studies suggested that, if used in species distribution models (SDMs), these data should enable modelling species’ micro-habitats and allow improving predictions for fine-scale biodiversity management. In the present study, we tested the influence, in SDMs, of predictors derived from a VHR digital elevation model (DEM) by comparing the predictive power of models for 239 plant species and their assemblages fitted at six different resolutions in the Swiss Alps. We also tested whether changes of the model quality for a species is related to its functional and ecological characteristics. Refining the resolution only contributed to slight improvement of the models for more than half of the examined species, with the best results obtained at 5 m, but no significant improvement was observed, on average, across all species. Contrary to our expectations, we could not consistently correlate the changes in model performance with species characteristics such as vegetation height. Temperature, the most important variable in the SDMs across the different resolutions, did not contribute any substantial improvement. Our results suggest that improving resolution of topographic data only is not sufficient to improve SDM predictions – and therefore local management – compared to previously used resolutions (here 25 and 100 m). More effort should be dedicated now to conduct finer-scale in-situ environmental measurements (e.g. for temperature, moisture, snow) to obtain improved environmental measurements for fine-scale species mapping and management.


Sign in / Sign up

Export Citation Format

Share Document