The effects of product structure and sequencing rule on assembly shop performance

1989 ◽  
Vol 27 (4) ◽  
pp. 671-686 ◽  
Author(s):  
TIMOTHY D. FRY ◽  
MICHAEL D. OLIFF ◽  
ELLIOT D. MINOR ◽  
G. KEONG LEONG
2018 ◽  
Author(s):  
William A. Shirley ◽  
Brian P. Kelley ◽  
Yohann Potier ◽  
John H. Koschwanez ◽  
Robert Bruccoleri ◽  
...  

This pre-print explores ensemble modeling of natural product targets to match chemical structures to precursors found in large open-source gene cluster repository antiSMASH. Commentary on method, effectiveness, and limitations are enclosed. All structures are public domain molecules and have been reviewed for release.


2020 ◽  
Vol 24 ◽  
Author(s):  
Hubert Hettegger ◽  
Andreas Hofinger ◽  
Thomas Rosenau

: The regioselectivity of the reaction of 2,5-dihydroxy-[1,4]-benzoquinone (DHBQ) with diamines could not be explained satisfactorily so far. In general, the reaction products can be derived from the tautomeric ortho-quinoid structure of a hypothetical 4,5-dihydroxy-[1,2]-benzoquinone. However, both aromatic and aliphatic 1,2-diamines form in some cases phenazines, formally by diimine formation on the quinoid carbonyl groups, and in other cases the corresponding 1,2- diamino-[1,2]-benzoquinones, by nucleophilic substitution of the OH groups, the regioselectivity apparently not following any discernible pattern. The reactivity was now explained by an adapted theory of strain-induced bond localization (SIBL). Here, the preservation of the "natural" geometry of the two quinoid C–C double bonds (C3=C4 and C5=C6) as well as the N–N distance of the co-reacting diamine are crucial. A decrease of the annulation angle sum (N–C4–C5 + C4–C5–N) is tolerated well and the 4,5-diamino-ortho-quinones, having relatively short N–N spacings are formed. An increase in the angular sum is energetically unfavorable, so that diamines with a larger N–N distance afford the corresponding ortho-quinone imines. Thus, for the reaction of DHBQ with diamines, exact predictions of the regioselectivity, and the resulting product structure, can be made on the basis of simple computations of bond spacings and product geometries.


2021 ◽  
Vol 19 (1) ◽  
pp. 77-86
Author(s):  
Xiangjun Kong ◽  
Pei Wang ◽  
Jian Tang

Abstract In any U-abundant semigroup with an Ehresmann transversal, two significant components R and L are introduced in this paper and described by Green’s ∼ \sim -relations. Some interesting properties associated with R and L are explored and some equivalent conditions for the Ehresmann transversal to be a quasi-ideal are acquired. Finally, a spined product structure theorem is established for a U-abundant semigroup with a quasi-ideal Ehresmann transversal by means of R and L.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Michael Grigalunas ◽  
Annina Burhop ◽  
Sarah Zinken ◽  
Axel Pahl ◽  
José-Manuel Gally ◽  
...  

AbstractNatural product structure and fragment-based compound development inspire pseudo-natural product design through different combinations of a given natural product fragment set to compound classes expected to be chemically and biologically diverse. We describe the synthetic combination of the fragment-sized natural products quinine, quinidine, sinomenine, and griseofulvin with chromanone or indole-containing fragments to provide a 244-member pseudo-natural product collection. Cheminformatic analyses reveal that the resulting eight pseudo-natural product classes are chemically diverse and share both drug- and natural product-like properties. Unbiased biological evaluation by cell painting demonstrates that bioactivity of pseudo-natural products, guiding natural products, and fragments differ and that combination of different fragments dominates establishment of unique bioactivity. Identification of phenotypic fragment dominance enables design of compound classes with correctly predicted bioactivity. The results demonstrate that fusion of natural product fragments in different combinations and arrangements can provide chemically and biologically diverse pseudo-natural product classes for wider exploration of biologically relevant chemical space.


2013 ◽  
Vol 300-301 ◽  
pp. 32-35
Author(s):  
Xiao Wen Zeng ◽  
Cheng Zeng ◽  
Bing Han

In order to manage the complex simulation data management in the process of mechanical dynamics simulation, a new management model was presented which is Performance Simulation Model(PSM). The model was based on PDM product structure and the concepts and elements of PSM were defined in this paper. Furthermore, the functional framework of PSM was proposed which based on the hierarchical relationship of product structure and the data stream relationship of data structure matrix. Finally, PSM was applied on ship planetary reducer collaborative simulation platform. The result indicates that the simulation data in mechanical collaborative simulation are managed by PSM, and the problem of interaction between collaborative simulation and PDM is solved.


Sign in / Sign up

Export Citation Format

Share Document