Transition flow occurrence on stepped channels

Author(s):  
Shangtuo Qian ◽  
JianHua Wu ◽  
Hui Xu ◽  
Fei Ma
Keyword(s):  
Water ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 72
Author(s):  
Suresh Kumar Thappeta ◽  
S. Murty Bhallamudi ◽  
Venu Chandra ◽  
Peter Fiener ◽  
Abul Basar M. Baki

Three-dimensional numerical simulations were performed for different flow rates and various geometrical parameters of step-pools in steep open channels to gain insight into the occurrence of energy loss and its dependence on the flow structure. For a given channel with step-pools, energy loss varied only marginally with increasing flow rate in the nappe and transition flow regimes, while it increased in the skimming regime. Energy loss is positively correlated with the size of the recirculation zone, velocity in the recirculation zone and the vorticity. For the same flow rate, energy loss increased by 31.6% when the horizontal face inclination increased from 2° to 10°, while it decreased by 58.6% when the vertical face inclination increased from 40° to 70°. In a channel with several step-pools, cumulative energy loss is linearly related to the number of step-pools, for nappe and transition flows. However, it is a nonlinear function for skimming flows.


Author(s):  
P. Lopez ◽  
Y. Bayazitoglu

Lattice Boltzmann (LB) method models have been demonstrated to provide an accurate representation of the flow characteristics in rarefied flows. Conditions in such flows are characterized by the Knudsen number (Kn), defined as the ratio between the gas molecular Mean Free Path ( MFP, λ) and the device characteristic length (L). As the Knudsen number increases, the behavior of the flow near the walls is increasingly dominated by interactions between the gas molecules and the solid surface. Due to this, linear constitutive relations for shear stress and heat flux, which are assumed in the Navier-Stokes-Fourier (NSF) system of equations, are not valid within the Knudsen Layer (KL). Fig. 1 illustrates the characteristics of the velocity field within the Knudsen layer in a shear-driven flow. It is easily observed that although the NSF equations with slip flow boundary conditions (represented by dashed line) can predict the velocity profile in the bulk flow region, they fail to capture the flow characteristics inside the Knudsen layer. Slip flow boundary conditions have also been derived using the integral transform technique [1]. Various methods have been explored to extend the applicability of LB models to higher Knudsen number flows, including using higher order velocity sets, and using wall-distance functions to capture the effect of the walls on the mean free path by incorporating such functions on the determination of the local relaxation parameters. In this study, a high order velocity model which contains a two-dimensional, thirteen velocity direction set (e.g., D2Q13), as shown in Fig. 2, is used as the basis of the current LB model. The LB model consists of two independent distribution functions to simulate the density and temperature fields, while the Diffuse Scattering Boundary Condition (DSBC) method is used to simulate the fluid interaction with the walls. To further improve the characterization of transition flow conditions expected in nano-scale heat transfer, we explored the implementation of two wall-distance functions, derived recently based on an integrated form of a probability distribution function, to the high-order LB model. These functions are used to determine the effective mean free path values throughout the height of the micro/nano-channel, and the resulting effect is first normalized and then used to determine local relaxation times for both momentum and energy using a relationship based on the local Knudsen number. The two wall-distance functions are based on integral forms of 1) the classical probability distribution function, ψ(r) = λ0−1e−r/λ0, derived by Arlemark et al [2], in which λ0represents the reference gas mean free path, and 2) a Power-Law probability distribution function, derived by Dongari et al [3]. Thus, the probability that a molecule travels a distance between r and r+dr between two successive collisions is equal to ψ(r)dr. The general form of the integral of the two functions used can be described by ψ(r) = C − f(r), where f(r) represents the base function (exponential or Power Law), and C is set to 1 so that the probability that a molecule will travel a distance r+dr without a collision ranges from zero to 1. The performance of the present LB model coupled with the implementation of the two wall-distance functions is tested using two classical flow cases. The first case considered is that of isothermal, shear-driven Couette flow between two parallel, horizontal plates separated by a distance H, moving in opposite directions at a speed of U0. Fig. 3 shows the normalized velocity profiles across the micro-channel height for various Knudsen numbers in the transition flow regime based on our LB models as compared to data based on the Linearized Boltzmann equation [4]. The results show that our two LB models provide results that are in excellent agreement with the reference data up to the high end of the transition flow regime, with Knudsen numbers greater than 1. The second case is rarefied Fourier flow within horizontal, parallel plates, with the plates being stationary and set to a constant temperature (TTop > TBottom), and the Prandtl number is set to 0.67 to match the reference data based on the Direct Simulation Monte Carlo (DSMC) method [5]. Fig. 4 shows the normalized temperature profiles across the microchannel height for various Knudsen numbers in the slip/transition How regime. For the entire Knudsen number range studied, our two LB models provide temperature profiles that are in excellent agreement with the non-linear profile seen in the reference data. The results obtained show that the effective MFP relationship based on the exponential function improves the results obtained with the high order LB model for both shear-driven and Fourier flows up to Kn∼1. The results also show that the effective MFP relationship based on the Power Law distribution function greatly enhances the results obtained with the high order LB model for the two cases addressed, up to Kn∼3. In conclusion, the resulting LB models represent an effective tool in modeling non-equilibrium gas flows expected within micro/nano-scale devices.


Author(s):  
Zhenfeng Wang ◽  
Peigang Yan ◽  
Hongyan Huang ◽  
Wanjin Han

The ANSYS-CFX software is used to simulate NASA-Mark II high pressure air-cooled gas turbine. The work condition is Run 5411 which have transition flow characteristics. The different turbulence models are adopted to solve conjugate heat transfer problem of this three-dimensional turbine blade. Comparing to the experimental results, k-ω-SST-γ-θ turbulence model results are more accurate and can simulate accurately the flow and heat transfer characteristics of turbine with transition flow characteristics. But k-ω-SST-γ-θ turbulence model overestimates the turbulence kinetic energy of blade local region and makes the heat transfer coefficient higher. It causes that local region temperature of suction side is higher. In this paper, the compiled code adopts the B-L algebra model and simulates the same computation model. The results show that the results of B-L model are accurate besides it has 4% temperature error in the suction side transition region. In addition, different turbulence characteristic boundary conditions of turbine inner-cooling passages are given and K-ω-SST-γ-θ turbulence model is adopted in order to obtain the effect of turbulence characteristic boundary conditions for the conjugate heat transfer computation results. The results show that the turbulence characteristic boundary conditions of turbine inner-cooling passages have a great effect on the conjugate heat transfer results of high pressure gas turbine. ANSYS is applied to analysis the thermal stress of Mark II blade which has ten radial cooled passages and the results of Von Mises stress show that the temperature gradient results have a great effect on the results of blade thermal stress.


2019 ◽  
Vol 141 (5) ◽  
Author(s):  
Georg Geiser ◽  
Jens Wellner ◽  
Edmund Kügeler ◽  
Anton Weber ◽  
Anselm Moors

A nonlinear full-wheel time-domain simulation of a two-stage low pressure turbine is presented, analyzed, and compared with the available experimental data. Recent improvements to the computational fluid dynamics (CFD) solver TRACE that lead to significantly reduced wall-clock times for such large scale simulations are described in brief. Since the configuration is characterized by significant unsteady turbulence and transition effects, it is well suited for the validation and benchmarking of frequency-domain methods. Transition, flow separation and wall pressure fluctuations on the stator blades of the second stage are analyzed in detail. A strong azimuthal π-periodicity is observed, manifesting in a significantly varying stability of the midspan trailing edge flow with a quasi-steady closed separation bubble on certain blades and highly dynamic partially open separation bubbles with recurring transition and turbulent reattachment on other blades. The energy spectrum of fluctuating wall quantities in that regime shows a high bandwidth and considerable disharmonic content, which is challenging for frequency-domain-based simulation methods.


Author(s):  
Weilin Yang ◽  
Hongxia Li ◽  
TieJun Zhang ◽  
Ibrahim M. Elfadel

Rarefied gas flow plays an important role in the design and performance analysis of micro-electro-mechanical systems (MEMS) under high-vacuum conditions. The rarefaction can be evaluated by the Knudsen number (Kn), which is the ratio of the molecular mean free path length and the characteristic length. In micro systems, the rarefied gas flow usually stays in the slip- and transition-flow regions (10−3 < Kn < 10), and may even go into the free molecular flow region (Kn > 10). As a result, conventional design tools based on continuum Navier-Stokes equation solvers are not applicable to analyzing rarefaction phenomena in MEMS under vacuum conditions. In this paper, we investigate the rarefied gas flow by using the lattice Boltzmann method (LBM), which is suitable for mesoscopic fluid simulation. The gas pressure determines the mean free path length and Kn, which further influences the relaxation time in the collision procedure of LBM. Here, we focus on the problem of squeezed film damping caused by an oscillating rigid object in a cavity. We propose an improved LBM with an immersed boundary approach, where an adjustable force term is used to quantify the interaction between the moving object and adjacent fluid, and further determines the slip velocity. With the proposed approach, the rarefied gas flow in MEMS with squeezed film damping is characterized. Different factors that affect the damping coefficient, such as pressure of gas and frequency of oscillation, are investigated in our simulation studies.


Sign in / Sign up

Export Citation Format

Share Document