Design of Experiments for the Effect of pH, Storage Time and Zinc Oxide Content on the Antibacterial Properties of Low-Density Polyethylene (LDPE)/Zinc Oxide Nanocomposites

Author(s):  
Sajjad Givi ◽  
Hassan Ebadi-Dehaghani
2019 ◽  
Vol 35 (2) ◽  
pp. 117-134 ◽  
Author(s):  
Hajer Rokbani ◽  
France Daigle ◽  
Abdellah Ajji

Concerns in food safety and the need for high-quality foods have increased the demand for extending the shelf life of packaged foods. Subsequently, promoting and investigating the development of antibacterial materials for food packaging has become inevitable. Zinc oxide nanoparticles have attracted attention lately owing to their multifunctional properties, especially antibacterial activity. For this study, antibacterial low-density polyethylene films were prepared by coating zinc oxide nanoparticles onto their surface. The low-density polyethylene film antibacterial activity was evaluated toward Gram-positive and Gram-negative bacteria. The scanning electron microscopy images showed that using anhydride-modified low-density polyethylene (LDPE-g-AM) resin permitted improved zinc oxide nanoparticle distribution on the low-density polyethylene film surface, reduced the agglomerate sizes, and reinforced the zinc oxide nanoparticle bonding to the low-density polyethylene film surface. We found that the coated low-density polyethylene films exhibited high antibacterial activity against both strains. The antibacterial tests also proved that the coated films retained their antibacterial efficiency toward Escherichia coli, even after eight months, with a reduction rate higher than 99.9%, whereas for Staphylococcus aureus the antibacterial properties for the linear low-density polyethylene (LLDPE) films decreased at eight months and improved for the LDPE-g-AM films. When the zinc oxide coated films were laminated with neat low-density polyethylene, only the LDPE-g-AM was still active against E. coli provided that the lamination thickness does not go beyond 8 µm. This research demonstrated that the coated low-density polyethylene films have excellent attributes when used as an active coating in the food packaging industry.


2005 ◽  
Vol 59 (4) ◽  
pp. 473-476 ◽  
Author(s):  
J.I. Hong ◽  
P. Winberg ◽  
L.S. Schadler ◽  
R.W. Siegel

Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2811
Author(s):  
Karla Čech Barabaszová ◽  
Sylva Holešová ◽  
Marianna Hundáková ◽  
Alena Kalendová

Materials made from low-density polyethylene (LDPE) in the form of packages or catheters are currently commonly applied medical devices. Antimicrobial LDPE nanocomposite materials with two types of nanofillers, zinc oxide/vermiculite (ZnO/V) and zinc oxide/vermiculite_chlorhexidine (ZnO/V_CH), were prepared by a melt-compounded procedure to enrich their controllable antimicrobial, microstructural, topographical and tribo-mechanical properties. X-ray diffraction (XRD) analysis and Fourier transform infrared spectroscopy (FTIR) revealed that the ZnO/V and ZnO/V_CH nanofillers and LDPE interacted well with each other. The influence of the nanofiller concentrations on the LDPE nanocomposite surface changes was studied through scanning electron microscopy (SEM), and the surface topology and roughness were studied using atomic force microscopy (AFM). The effect of the ZnO/V nanofiller on the increase in indentation hardness (HIT) was evaluated by AFM measurements and the Vickers microhardness (HV), which showed that as the concentration of the ZnO/V nanofiller increased, these values decreased. The ZnO/V and ZnO/V_CH nanofillers, regardless of the concentration in the LDPE matrix, slightly increased the average values of the friction coefficient (COF). The abrasion depths of the wear indicated that the LDPE_ZnO/V nanocomposite plates exhibited better wear resistance than LDPE_ZnO/V_CH. Higher HV and HIT microhardness values were measured for both nanofillers than the natural LDPE nanocomposite plate. Very positive antimicrobial activity against S. aureus and P. aeruginosa after 72 h was found for both nanofiller types.


2017 ◽  
Vol 33 (4) ◽  
pp. 413-437 ◽  
Author(s):  
María J Moreno-Vásquez ◽  
Maribel Plascencia-Jatomea ◽  
Víctor M Ocaño-Higuera ◽  
Francisco J Castillo-Yáñez ◽  
Francisco Rodríguez-Félix ◽  
...  

The antibacterial activity of low-density polyethylene/adhesive resin (10%)/epigallocatechin gallate (0.03, 0.5, 5, and 10%) extrusion cast films were evaluated against Staphylococcus aureus (gram positive) and Pseudomonas sp. (gram negative) via direct contact and in solid and liquid culture media. The epigallocatechin gallate concentration in the active films was established per the in vitro antibacterial analysis of pure epigallocatechin gallate against S. aureus and Pseudomonas sp. The epigallocatechin gallate migration profile and concentration required to inhibit bacterial growth in broth were determined. In addition, the effects of epigallocatechin gallate and adhesive resin on the mechanical, color, and thermal film properties were investigated. The results indicate that pure epigallocatechin gallate inhibited the growth of both bacteria. However, only the films with 10 wt% epigallocatechin gallate (with and without adhesive resin) induced morphological changes and inhibited the growth of S. aureus (p < 0.05). In addition, the films with 10 wt% epigallocatechin gallate (with adhesive resin) induced morphological changes in Pseudomonas sp. (p < 0.05). The adhesive resin increased the epigallocatechin gallate release rate in the migration profile (p < 0.05). The epigallocatechin gallate and adhesive resin modified the film properties (p < 0.05). Fourier transform infrared analysis indicated hydrogen bonds between the adhesive resin and epigallocatechin gallate. This study demonstrated that epigallocatechin gallate is a potential antibacterial agent and that adhesive resin provides advantages to active films.


Sign in / Sign up

Export Citation Format

Share Document