The Role of Temperature Change as Reinforcement

1951 ◽  
Vol 32 (2) ◽  
pp. 231-239 ◽  
Author(s):  
Willard E. Caldwell ◽  
Kenneth F. Mosman
Keyword(s):  
2018 ◽  
Author(s):  
Frank A. Corsetti ◽  
◽  
Victoria A. Petryshyn ◽  
Sarah E. Greene ◽  
Stefan Lalonde ◽  
...  

2012 ◽  
Vol 1426 ◽  
pp. 365-370
Author(s):  
Francisco Temoltzi Avila ◽  
Andrey Kosarev ◽  
Ismael Cosme ◽  
Mario Moreno ◽  
P. Roca y Cabarrocas

ABSTRACTThe dark current-voltage characteristics of PIN structures are studied and analyzed for PV samples as for integral device without taking account the performance of the different elements typically used in equivalent circuit model such as diode n-factor, shunt and series resistances. The contribution of all these elements is very important in the development of devices because they determine the performance characteristics. In this work we have studied and compared the temperature dependence of current-voltage characteristics in μc-Si:H and pm-Si:H p-i-n structures having approximately the same efficiencies with emphasis on their different electronic characteristics such as shunt (Rsh) and series (Rs) resistance, ideality factor (n), and the saturation current (Is), which give us some ideas on role of these elements. In the pm-Si:H cell it was observed that the Rs increases with the increase of the temperature in contrast to the μc-Si:H structures, where the series resistance reduces with temperature change from T = 300 up to 480K. In both the pm-Si:H and μc-Si:H samples Rshreduces with temperature change from 300 up to 480 K. The ideality factor in the pm-Si:H structure shows an increase, and in μc-Si:H a reduction, when temperature increases. Saturation current in both cases increases with temperature as it was expected. From the saturation current it was obtained the build-in potential. Analysis behavior of both saturation current and n-factor with temperature shows that build-in potential increases with temperature in the pm-Si:H, but reduces in μc-Si:H structure.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Luke Skinner ◽  
Laurie Menviel ◽  
Lauren Broadfield ◽  
Julia Gottschalk ◽  
Mervyn Greaves

Abstract The record of past climate highlights recurrent and intense millennial anomalies, characterised by a distinct pattern of inter-polar temperature change, termed the ‘thermal bipolar seesaw’, which is widely believed to arise from rapid changes in the Atlantic overturning circulation. By forcing a suppression of North Atlantic convection, models have been able to reproduce many of the general features of the thermal bipolar seesaw; however, they typically fail to capture the full magnitude of temperature change reconstructed using polar ice cores from both hemispheres. Here we use deep-water temperature reconstructions, combined with parallel oxygenation and radiocarbon ventilation records, to demonstrate the occurrence of enhanced deep convection in the Southern Ocean across the particularly intense millennial climate anomaly, Heinrich Stadial 4. Our results underline the important role of Southern Ocean convection as a potential amplifier of Antarctic warming, and atmospheric CO2 rise, that is responsive to triggers originating in the North Atlantic.


Sign in / Sign up

Export Citation Format

Share Document