Time course study of aluminum-induced callose formation in barley roots as observed by digital microscopy and low-vacuum scanning electron microscopy

1999 ◽  
Vol 45 (3) ◽  
pp. 701-712 ◽  
Author(s):  
Maiko Kaneko ◽  
Etsuro Yoshimura ◽  
Naoko K. Nishizawa ◽  
Satoshi Mori
Author(s):  
Nancy R. Wallace ◽  
Craig C. Freudenrich ◽  
Karl Wilbur ◽  
Peter Ingram ◽  
Ann LeFurgey

The morphology of balanomorph barnacles during metamorphosis from the cyprid larval stage to the juvenile has been examined by light microscopy and scanning electron microscopy (SEM). The free-swimming cyprid attaches to a substrate, rotates 90° in the vertical plane, molts, and assumes the adult shape. The resulting metamorph is clad in soft cuticle and has an adult-like appearance with a mantle cavity, thorax with cirri, and incipient shell plates. At some time during the development from cyprid to juvenile, the barnacle begins to mineralize its shell, but it is not known whether calcification occurs before, during, or after ecdysis. To examine this issue, electron probe x-ray microanalysis (EPXMA) was used to detect calcium in cyprids and juveniles at various times during metamorphosis.Laboratory-raised, free-swimming cyprid larvae were allowed to settle on plastic coverslips in culture dishes of seawater. The cyprids were observed with a dissecting microscope, cryopreserved in liquid nitrogen-cooled liquid propane at various times (0-24 h) during metamorphosis, freeze dried, rotary carbon-coated, and examined with scanning electron microscopy (SEM). EPXMA dot maps were obtained in parallel for qualitative assessment of calcium and other elements in the carapace, wall, and opercular plates.


Langmuir ◽  
2019 ◽  
Vol 35 (32) ◽  
pp. 10390-10396 ◽  
Author(s):  
Takaaki Tsuruoka ◽  
Manami Hata ◽  
Shoya Hirao ◽  
Takashi Ohhashi ◽  
Yohei Takashima ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Victor S. Njom ◽  
Tim Winks ◽  
Oumu Diallo ◽  
Ann Lowe ◽  
Jerzy Behnke ◽  
...  

Abstract Background Plant-derived cysteine proteinases of the papain family (CPs) attack nematodes by digesting the cuticle, leading to rupture and death of the worm. The nematode cuticle is composed of collagens and cuticlins, but the specific molecular target(s) for the proteinases have yet to be identified. Methods This study followed the course of nematode cuticle disruption using immunohistochemistry, scanning electron microscopy and proteomics, using a free-living nematode, Caenorhabditis elegans and the murine GI nematode Heligmosomoides bakeri (H. polygyrus) as target organisms. Results Immunohistochemistry indicated that DPY-7 collagen is a target for CPs on the cuticle of C. elegans. The time course of loss of DPY-7 from the cuticle allowed us to use it to visualise the process of cuticle disruption. There was a marked difference in the time course of damage to the cuticles of the two species of nematode, with H. bakeri being more rapidly hydrolysed. In general, the CPs’ mode of attack on the nematode cuticle was by degrading the structural proteins, leading to loss of integrity of the cuticle, and finally death of the nematode. Proteomic analysis failed conclusively to identify structural targets for CPs, but preliminary data suggested that COL-87 and CUT-19 may be important targets for the CPs, the digestion of which may contribute to cuticle disruption and death of the worm. Cuticle globin was also identified as a cuticular target. The presence of more than one target protein may slow the development of resistance against this new class of anthelmintic. Conclusions Scanning electron microscopy and immunohistochemistry allowed the process of disruption of the cuticle to be followed with time. Cuticle collagens and cuticlins are molecular targets for plant cysteine proteinases. However, the presence of tyrosine cross-links in nematode cuticle proteins seriously impeded protein identification by proteomic analyses. Multiple cuticle targets exist, probably making resistance to this new anthelmintic slow to develop. Graphic Abstract


2001 ◽  
Vol 85 (06) ◽  
pp. 1018-1024 ◽  
Author(s):  
C. L. McGuinness ◽  
J. Humphries ◽  
M. Waltham ◽  
K. G. Burnand ◽  
M. Collins ◽  
...  

Summary Objective. Infusing monocytes that have been stimulated to produce fibrinolytic activators and factors that regulate cell proliferation, migration and maturation, might enhance venous thrombus resolution. The aim of this study was to determine the time course of infused monocyte recruitment into venous thrombus in an appropriate model of this disease. Design and Methods. Thrombus was induced in the inferior vena cava of male Wistar rats using reduced flow (80-90% stenosis). The vessel wall was examined at 1hr by scanning electron microscopy. Resolving thrombi with surrounding vena cava were obtained at 1, 7, 14 and 21 days after induction (n = 8). Sections, taken at 0.5 mm intervals (10-15 sections per thrombus), were stained using haematoxylin, Martius Scarlet Blue and antibodies against monocytes, platelets and fibrin. Sections from human venous thrombi (n = 4) were similarly stained. The area occupied by monocytes (in relative pixel units, RPU) was determined using computer aided image analysis. Peripheral rat blood monocytes were extracted, fluorescently labelled and injected intravenously into 7 rats prior to thrombus induction. Vena cava with thrombus was harvested 1 h, 2, 3, 4, 7, 14 and 25 days after induction and their fluorescence measured. The fluorescent content of the caval wall and thrombus was analysed in greater detail at 2 and 25 days after thrombus induction (n = 4 at each time interval). Results. Experimental thrombi were structurally similar to human thrombus and resolved within 14-21 days. Scanning electron microscopy showed minimal endothelial damage at 1 h with signs of early thrombus formation (platelet, red cell leukocyte and fibrin deposition). Neutrophils were the predominant leukocyte in the thrombus at 1 day, with monocytes making up only 0.3% (0.04% sem) of the area of the thrombus. There was a steady increase in thrombus monocyte content and by 21 days the percentage area of thrombus covered by monocytes had increased by over 35 fold to 11.5% (2.3% sem) (p <0.001). Initially, monocytes appeared around the edge of the thrombus and became more evenly distributed through the thrombus as resolution progressed. Labelled monocytes could be found in the circulation up to 1 week after infusion. The fluorescent content (RPU) of the thrombus increased over 25 days (mean RPU At 2 days 0.012, sem 0.005; mean RPU at 25 days 1.062, sem 0.252, p = 0.008). The number of labelled monocytes in the vessel wall peaked at 2 days and decreased thereafter.


1995 ◽  
Vol 144 (2) ◽  
pp. 193-200 ◽  
Author(s):  
J Mizuki ◽  
N Masumoto ◽  
M Tahara ◽  
K Fukami ◽  
A Mammoto ◽  
...  

Abstract These studies were undertaken to characterize the exocytotic changes in purified gonadotropes by three-dimensional imaging using scanning electron microscopy. Rat gonadotropes were purified using a fluorescence-activated cell sorter and an argon laser treatment system. The purified gonadotropes were stimulated with GnRH under various conditions and fixed for scanning electron microscopy. After the GnRH stimulation, many 'hole' structures (diameter 0·1–0·5 μm) were observed on the cell surface, and notably the population of cells with 10 or more holes was clearly increased. The pattern of the time-course of the changes in this population was perfectly consistent with the LH secretory profile of pituitary cells, and their formation of the cells with 10 or more holes was completely inhibited by pretreatment with a GnRH antagonist. Our data suggest that the hole structure represents an exocytotic opening site and that regulated exocytosis in purified gonadotropes can be evaluated by scanning electron microscopy. This method may be widely applicable to other endocrine cells. Journal of Endocrinology (1995) 144, 193–200


IAWA Journal ◽  
1998 ◽  
Vol 19 (3) ◽  
pp. 285-299 ◽  
Author(s):  
Yuzou Sano ◽  
Ryogo Nakada

Bordered pit membranes of Cryptomeria japonica were examined successively from the outermost sapwood to the heartwood by scanning electron microscopy and by ultraviolet microspectrophotometry in an attempt to evaluate the time course of the secondary deposition of incrusting materials and to gain clues to their chemical composition. Scanning electron microscopy revealed that the bordered pit membranes were covered by incrusting materials from the middle layer of the sapwood to the heartwood. Both the amount and the appearance of the deposited incrusting materials differed among four regions of the wood, namely, the middle to inner layer of the sapwood, the innermost layer of the sapwood, the intermediate wood and the heartwood. From our results it appears that, in C. japonica, incrusting materials are deposited on bordered pit membranes by stages over several years. Apparent absorption of ultraviolet light by the bordered pit membranes was detected in the analysis of the innermost layer of the sapwood, the intermediate wood and the heartwood. The incrusting materials deposited in these zones were probably phenolic compounds. However, differences in the manner and extent of the absorption of ultraviolet light were found between these three regions of the wood. The results of microspectrophotometric analysis also suggested the phased deposition of incrusting materials at the bordered pit membranes of C. japonica.


1999 ◽  
Vol 5 (S2) ◽  
pp. 1304-1305
Author(s):  
Veronica C. Karpiak ◽  
Claude F. Garon

Borrelia burgdorferi is the causative agent of Lyme disease. In addition to the characteristic effects of acute infection, Lyme disease can cause chronic effects including cardiac and neurological complications [1]. Several laboratories have shown the ability of B. burgdorferi to attach and invade several cell types such as lymphocytes [2] and fibroblasts [3]. Cultured normal human astrocytes were used to investigate the possible interaction between a cell type of the central nervous system and the Lyme disease spirochete.Initially scanning electron microscopy was used to monitor and characterize the surface interaction between astrocytes and spirochetes. Astrocyte cell cultures were co-incubated with low passage B31 cultures over a time course from 1 hr to 18 hr. The co-cultures were washed extensively to discourage non-specific binding, glutaraldehyde fixed, critical point dried and mounted for field emission scanning electron microscopy. A time dependent association between the cultured astrocytes and B. burgdorferi were found to range from approximately 20% after 1 hr to almost 100% after 18 hr.


Author(s):  
P.S. Porter ◽  
T. Aoyagi ◽  
R. Matta

Using standard techniques of scanning electron microscopy (SEM), over 1000 human hair defects have been studied. In several of the defects, the pathogenesis of the abnormality has been clarified using these techniques. It is the purpose of this paper to present several distinct morphologic abnormalities of hair and to discuss their pathogenesis as elucidated through techniques of scanning electron microscopy.


Author(s):  
P.J. Dailey

The structure of insect salivary glands has been extensively investigated during the past decade; however, none have attempted scanning electron microscopy (SEM) in ultrastructural examinations of these secretory organs. This study correlates fine structure by means of SEM cryofractography with that of thin-sectioned epoxy embedded material observed by means of transmission electron microscopy (TEM).Salivary glands of Gromphadorhina portentosa were excised and immediately submerged in cold (4°C) paraformaldehyde-glutaraldehyde fixative1 for 2 hr, washed and post-fixed in 1 per cent 0s04 in phosphosphate buffer (4°C for 2 hr). After ethanolic dehydration half of the samples were embedded in Epon 812 for TEM and half cryofractured and subsequently critical point dried for SEM. Dried specimens were mounted on aluminum stubs and coated with approximately 150 Å of gold in a cold sputtering apparatus.Figure 1 shows a cryofractured plane through a salivary acinus revealing topographical relief of secretory vesicles.


Sign in / Sign up

Export Citation Format

Share Document