scholarly journals P and N deficiency change the relative abundance and function of rhizosphere microorganisms during cluster root development of white lupin (Lupinus albus L.)

2018 ◽  
Vol 64 (6) ◽  
pp. 686-696 ◽  
Author(s):  
Jun Wasaki ◽  
Junya Sakaguchi ◽  
Takuya Yamamura ◽  
Susumu Ito ◽  
Takuro Shinano ◽  
...  
2015 ◽  
Vol 177 ◽  
pp. 74-82 ◽  
Author(s):  
Zhengrui Wang ◽  
A.B.M. Moshiur Rahman ◽  
Guoying Wang ◽  
Uwe Ludewig ◽  
Jianbo Shen ◽  
...  

Horticulturae ◽  
2021 ◽  
Vol 7 (9) ◽  
pp. 302
Author(s):  
Miguel A. Quiñones ◽  
Susana Fajardo ◽  
Mercedes Fernández-Pascual ◽  
M. Mercedes Lucas ◽  
José J. Pueyo

Two white lupin (Lupinus albus L.) cultivars were tested for their capacity to accumulate mercury when grown in Hg-contaminated soils. Plants inoculated with a Bradyrhizobium canariense Hg-tolerant strain or non-inoculated were grown in two highly Hg-contaminated soils. All plants were nodulated and presented a large number of cluster roots. They accumulated up to 600 μg Hg g−1 DW in nodules, 1400 μg Hg g−1 DW in roots and 2550 μg Hg g−1 DW in cluster roots. Soil, and not cultivar or inoculation, was accountable for statistically significant differences. No Hg translocation to leaves or seeds took place. Inoculated L. albus cv. G1 plants were grown hydroponically under cluster root-promoting conditions in the presence of Hg. They accumulated about 500 μg Hg g−1 DW in nodules and roots and up to 1300 μg Hg g−1 DW in cluster roots. No translocation to the aerial parts occurred. Bioaccumulation factors were also extremely high, especially in soils and particularly in cluster roots. To our knowledge, Hg accumulation in cluster roots has not been reported to date. Our results suggest that inoculated white lupin might represent a powerful phytoremediation tool through rhizosequestration of Hg in contaminated soils. Potential uptake and immobilization mechanisms are discussed.


1998 ◽  
Vol 21 (5) ◽  
pp. 467-478 ◽  
Author(s):  
G. Keerthisinghe ◽  
P. J. Hocking ◽  
P. R. Ryan ◽  
E. Delhaize

2015 ◽  
Vol 154 (3) ◽  
pp. 407-419 ◽  
Author(s):  
Zhengrui Wang ◽  
Jianbo Shen ◽  
Uwe Ludewig ◽  
Günter Neumann

2021 ◽  
Vol 22 (8) ◽  
pp. 3856
Author(s):  
Sandra Rychel-Bielska ◽  
Anna Surma ◽  
Wojciech Bielski ◽  
Bartosz Kozak ◽  
Renata Galek ◽  
...  

White lupin (Lupinus albus L.) is a pulse annual plant cultivated from the tropics to temperate regions for its high-protein grain as well as a cover crop or green manure. Wild populations are typically late flowering and have high vernalization requirements. Nevertheless, some early flowering and thermoneutral accessions were found in the Mediterranean basin. Recently, quantitative trait loci (QTLs) explaining flowering time variance were identified in bi-parental population mapping, however, phenotypic and genotypic diversity in the world collection has not been addressed yet. In this study, a diverse set of white lupin accessions (n = 160) was phenotyped for time to flowering in a controlled environment and genotyped with PCR-based markers (n = 50) tagging major QTLs and selected homologs of photoperiod and vernalization pathway genes. This survey highlighted quantitative control of flowering time in white lupin, providing statistically significant associations for all major QTLs and numerous regulatory genes, including white lupin homologs of CONSTANS, FLOWERING LOCUS T, FY, MOTHER OF FT AND TFL1, PHYTOCHROME INTERACTING FACTOR 4, SKI-INTERACTING PROTEIN 1, and VERNALIZATION INDEPENDENCE 3. This revealed the complexity of flowering control in white lupin, dispersed among numerous loci localized on several chromosomes, provided economic justification for future genome-wide association studies or genomic selection rather than relying on simple marker-assisted selection.


Sign in / Sign up

Export Citation Format

Share Document