Synthesis, antibacterial activities and molecular docking study of thiouracil derivatives containing oxadiazole moiety

2021 ◽  
pp. 1-9
Author(s):  
Peng-Lei Cui ◽  
Di Zhang ◽  
Xiu-Min Guo ◽  
Shu-Jing Ji ◽  
Qing-Mei Jiang
Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4817
Author(s):  
Huda R. M. Rashdan ◽  
Ihsan A. Shehadi ◽  
Mohamad T. Abdelrahman ◽  
Bahaa A. Hemdan

In this study, a new synthetic 1,2,3-triazole-containing disulfone compound was derived from dapsone. Its chemical structure was confirmed using microchemical and analytical data, and it was tested for its in vitro antibacterial potential. Six different pathogenic bacteria were selected. MICs values and ATP levels were determined. Further, toxicity performance was measured using MicroTox Analyzer. In addition, a molecular docking study was performed against two vital enzymes: DNA gyrase and Dihydropteroate synthase. The results of antibacterial abilities showed that the studied synthetic compound had a strong bactericidal effect against all tested bacterial strains, as Gram-negative species were more susceptible to the compound than Gram-positive species. Toxicity results showed that the compound is biocompatible and safe without toxic impact. The molecular docking of the compound showed interactions within the pocket of two enzymes, which are able to stabilize the compound and reveal its antimicrobial activity. Hence, from these results, this study recommends that the established compound could be an outstanding candidate for fighting a broad spectrum of pathogenic bacterial strains, and it might therefore be used for biomedical and pharmaceutical applications.


2021 ◽  
Vol 3 (2) ◽  
pp. 70
Author(s):  
Marko Jeremia Kalalo ◽  
Fatimawali Fatimawali ◽  
Tekla Kalalo ◽  
Christani I J Rambi

ABSTRACT Methicillin-Resistant Staphylococcus aureus (MRSA) is a hypervirulent multidrug- resistant bacteria. It is spreading around the globe and starting to be a global health problem. It causes bacteremia, infective endocarditis, and bloodstream infection. PBP2a is a protein responsible for MRSA’s resistance to antibiotics, especially beta-lactams. Tea contains bioactive compounds such as polyphenols. It is known to have great antibacterial activities. Therefore, this study aims to find potentials antibacterial compounds from tea polyphenols that can inhibit PBP2a in MRSA with better binding energy than the currently available drugs using the molecular docking approach. We found that theaflavin (-9,7 kcal/mol), as one of the tea polyphenols compound, has a better binding energy with ceftaroline (9,5 kcal/mol) therefore predicted to have better antibacterial activity. (−)- Epigallocatechingallate (-9,1 kcal/mol), (−)-epicatechingallate (-8,8 kcal/mol), myricetin (- 8,7 kcal/mol), quercetin (-8,5 kcal/mol), (−)-epicatechin (-8,3 kcal/mol), (−)- epigallocatechin (-8,3 kcal/mol), kaempferol (-8,3 kcal/mol), procyanidin B2 (-8,1), and theflavindigallate (-7,6 kcal/mol) also have the potential to inhibit MRSA due to its low binding energy. Key words : Molecular docking, MRSA, PBP2a, Tea polyphenols.


2015 ◽  
Author(s):  
Manik Ghosh ◽  
Kamal Kant ◽  
Anoop Kumar ◽  
Padma Behera ◽  
Naresh Rangra ◽  
...  

2020 ◽  
Author(s):  
Rafael Espiritu

<p>Cholesterol-dependent cytolysins (CDCs) are proteinaceous toxins secreted as monomers by some Gram-positive and Gram-negative bacteria that contribute to their pathogenicity. These toxins bind to either cholesterol or human CD59, leading to massive structural changes, toxin oligomerization, formation of very large pores, and ultimately cell death, making these proteins promising targets for inhibition. Myricetin, and its related flavonoids, have been previously identified as a candidate small molecule inhibitor of specific CDCs such as listeriolysin O (LLO) and suilysin (SLY), interfering with their oligomerization. In this work, molecular docking was performed to assess the interaction of myricetin with other CDCs whose crystal structures are already known. Results indicated that although myricetin bound to the hitherto identified cavity in domain 4 (D4), much more efficient and stable binding was obtained in sites along the interfacial regions of domains 1 – 3 (D1 – D3). This was common among the tested CDCs, which was primarily due to much more extensive stabilizing intermolecular interactions, as indicated by post-docking analysis. Specifically, myricetin bound to (1) the interface of the three domains in anthrolysin O (ALO), perfringolysin O (PFO), pneumolysin (PLY), SLY, and vaginolysin (VLY), (2) at/near the D1/D3 interface in LLO and streptolysin O (SLO), and (3) along the D2/D3 interface in intermedilysin (ILY). These findings provide theoretical basis on the possibility of using myricetin and its related compounds as a broad-spectrum inhibitor of CDCs to potentially address the diseases associated with these pathogens.</p>


Author(s):  
Acharya Balkrishna ◽  
Rashmi Mittal ◽  
Vedpriya Arya

Background:: COVID-19 caused by SARS-CoV-2 has been declared as global pandemic by WHO. Comprehensive analysis of this unprecedented outbreak may help to fight against the disease and may play a pivotal role in decreasing the mortality rate linked with it. Papain like protease (PLpro), a multifunctional polyprotein facilitates the replication of SARS-CoV-2 and evades it from the host immunological response by antagonizing cytokines, interferons and may be considered as potential drug target to combat the current pandemic. Methods:: Natural moieties obtained from medicinal plants were analysed for their potency to target PLpro of SARS-CoV-2 by molecular docking study and were compared with synthetic analogs named as remdesivir, chloroquine and favipiravir. The stability of complexes of top hits was analysed by MD Simulation and interaction energy was calculated. Furthermore, average RMSD values were computed and deepsite ligand binding pockets were predicted using Play Molecule. Drug like abilities of these moieties were determined using ADMET and bond distance between the ligand and active site was assessed to predict the strength of interaction. Results:: Nimbocinol (-7.6 Kcal/mol) and sage (-7.3 Kcal/mol) exhibited maximum BA against PLpro SARS-CoV-2 as evident from molecular docking study which was found to be even better than remdesivir (-6.1 Kcal/mol), chloroquine (-5.3 Kcal/mol) and favipiravir (-5.7 Kcal/mol). Both nimbocinol-PLpro and sage-PLpro SARS-CoV-2 complex exhibited stable conformation during MD Simulation of 101ns at 310 K and potential, kinetic and electrostatic interaction energies were computed which was observed to be concordant with results of molecular docking study. RMSD average values were found to be 0.496 ± 0.015 Å and 0.598 ± 0.023 Å for nimbocinol and sage respectively thus revealing that both the deviation and fluctuations during MD Simulation were observed to be least. Deepsite prediction disclosed that both compounds occupied cryptic pockets in receptor and non-bond distance analysis revealed the formation of hydrogen bonds during ligand-receptor interaction. ADMET exploration further validated the drug like properties of these compounds. Conclusion:: Present study revealed that active constituents of Azadirachta indica and Salvia officinalis can be potentially used to target SARS-CoV-2 by hindering its replication process.


Sign in / Sign up

Export Citation Format

Share Document