Role of stuffer layers and fibre volume fractions on the mechanical properties of 3D woven fabrics for structural composites applications

2018 ◽  
Vol 110 (4) ◽  
pp. 614-624 ◽  
Author(s):  
Ashwini Kumar Dash ◽  
Bijoya Kumar Behera
2021 ◽  
pp. 096739112110239
Author(s):  
Sheedev Antony ◽  
Abel Cherouat ◽  
Guillaume Montay

Nowadays natural fibre composites have gained great significance as reinforcements in polymer matrix composites. Composite material based on a polymer matrix reinforced with natural fibres is extensively used in industry due to their biodegradability, recyclability, low density and high specific properties. A study has been carried out here to investigate the fibre volume fraction effect of hemp fibre woven fabrics/PolyPropylene (PP) composite laminates on the tensile properties and impact hammer impact test. Initially, composite sheets were fabricated by the thermal-compression process with desired number of fabric layers to obtain composite laminates with different fibre volume fraction. Uniaxial, shear and biaxial tensile tests were performed and mechanical properties were calculated. Impact hammer test was also carried out to estimate the frequency and damping parameters of stratified composite plates. Scanning Electron Microscope (SEM) analysis was performed to observe the matrix and fibre constituent defects. Hemp fabrics/PP composite laminates exhibits viscoelastic behaviour and as the fibre volume fraction increases, the viscoelastic behaviour decreases to elastic behaviour. Due to this, the tensile strength increases as the fibre content increases. On the other hand, the natural frequency increases and damping ratio decrease as the fibre volume fraction increases.


2001 ◽  
Vol 10 (2) ◽  
pp. 096369350101000 ◽  
Author(s):  
D. Levitus ◽  
S. Kenig ◽  
M. Kazanci ◽  
H. Harel ◽  
G. Marom

The effect of the transcrystalline layer on the longitudinal properties of unidirectional polyethylene/polyethylene (PE/PE) composites was studied. Two sets of PE/PE composites were prepared by quenching and by isothermal crystallisation, respectively, using a wide range of fibre volume fractions. Quenching and isothermal crystallisation were expected, respectively, to prevent or to induce generation of a highly ordered transcrystalline layer. The experimental results showed that isothermal crystallisation produced a substantial positive effect on both the longitudinal strength and modulus, which was attributed to transcrystallinity.


2020 ◽  
Vol 54 (24) ◽  
pp. 3501-3513
Author(s):  
Mohammad Aghaei ◽  
Mahmood M Shokrieh ◽  
Reza Mosalmani

Mechanical properties of woven fabric composites are influenced by fabric geometry and harness. In the present research, woven fabric composites made of ML-506 epoxy resin and E-glass woven fabrics with three different fabric geometries (harnesses of 2, 5, and 8) were studied experimentally. The new concepts of warp and fill-fiber volume fractions were introduced. Based on these new concepts, a micromechanical model for predicting the stiffness and strength of composites made of woven fabrics was developed. An experimental program was conducted to evaluate the present model and the new concepts of warp and fill-fiber volume fractions. The results obtained by the new micromechanical model have been compared with the conducted experimental results as well as the experimental data available in the literature, and very good correlations were obtained.


2011 ◽  
Vol 331 ◽  
pp. 202-205
Author(s):  
Yu Tao Chang ◽  
Xiao Ming Qian ◽  
Hai Wen Liu ◽  
Hua Wu Liu

3D woven fabric significantly improves the mechanical properties, especially the strength resulting from the between layers connections of yarns Hence, 3D woven fabrics have been widely used as reinforcing material in prefabricated composites, A particular 3D woven fabric with “中” shaped cross section was developed in this study .The fabric was made in a plane loom weaving machine. The designing procedure and processing methods are given in details.


Fibers ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 15 ◽  
Author(s):  
Henri Lansiaux ◽  
Damien Soulat ◽  
François Boussu ◽  
Ahmad Rashed Labanieh

Multiscale characterization of the textile preform made of natural fibers is an indispensable way to understand and assess the mechanical properties and behavior of composite. In this study, a multiscale experimental characterization is performed on three-dimensional (3D) warp interlock woven fabrics made of flax fiber on the fiber (micro), roving (meso), and fabric (macro) scales. The mechanical tensile properties of the flax fiber were determined by using the impregnated fiber bundle test. The effect of the twist was considered in the back-calculation of the fiber stiffness to reveal the calculation limits of the rule of mixture. Tensile tests on dry rovings were carried out while considering different twist levels to determine the optimal amount of twist required to weave the flax roving into a 3D warp interlock. Finally, at fabric-scale, six different 3D warp interlock architectures were woven to understand the role of the architecture of binding rovings on the mechanical properties of the dry 3D fabric. The results reveal the importance of considering the properties of the fiber and roving at these scales to determine the more adequate raw material for weaving. Further, the characterization of the 3D woven structures shows the preponderant role of the binding roving on their structural and mechanical properties.


2016 ◽  
Vol 51 (17) ◽  
pp. 2389-2406 ◽  
Author(s):  
LT Harper ◽  
CC Qian ◽  
R Luchoo ◽  
NA Warrior

A geometrical modelling scheme is presented to produce representative architectures for discontinuous fibre composites, enabling downstream modelling of mechanical properties. The model generates realistic random fibre architectures containing high filament count bundles (>3k) and high (∼50%) fibre volume fractions. Fibre bundles are modelled as thin shells using a multidimensional modelling strategy, in which fibre bundles are distributed and compacted to simulate pressure being applied from a matched mould tool. Finite element simulations are performed to benchmark the in-plane mechanical properties obtained from the numerical model against experimental data, with a detailed study presented to evaluate the tensile properties at various fibre volume fractions and specimen thicknesses. Tensile modulus predictions are in close agreement (less than 5% error) with experimental data at volume fractions below 45%. Ultimate tensile strength predictions are within 4.2% of the experimental data at volume fractions between 40 and 55%. This is a significant improvement over existing 2D modelling approaches, as the current model offers increased levels of fidelity, capturing dominant failure mechanisms and the influence of out-of-plane fibres.


2017 ◽  
Vol 4 (8) ◽  
pp. 085606 ◽  
Author(s):  
Shuai Xie ◽  
Zhijiang Ji ◽  
Zhonghe Shui ◽  
Bin Li ◽  
Guoyan Hou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document