Weaving 3D Fabric with a “中” Shaped Cross-Section

2011 ◽  
Vol 331 ◽  
pp. 202-205
Author(s):  
Yu Tao Chang ◽  
Xiao Ming Qian ◽  
Hai Wen Liu ◽  
Hua Wu Liu

3D woven fabric significantly improves the mechanical properties, especially the strength resulting from the between layers connections of yarns Hence, 3D woven fabrics have been widely used as reinforcing material in prefabricated composites, A particular 3D woven fabric with “中” shaped cross section was developed in this study .The fabric was made in a plane loom weaving machine. The designing procedure and processing methods are given in details.

Author(s):  
Sunny Pannu ◽  
Meenakshi Ahirwar ◽  
Rishi Jamdigni ◽  
B. K. Behera

The woven fabrics containing cotton/spandex core spun yarns possesses very vital properties of stretch, recovery and thus shape retention from the view point of wearing comfort and garment appearance. Spandex present in the core of core spun yarn is the most essential performer behind these properties. An attempt is made in this research work to study the influence of changing spandex denier in core spun yarn on the stretch and functional properties of stretch woven fabrics. The sole objective of this study is to find out whether different stretch, shrinkage and physical properties of stretch woven fabrics depend upon changing spandex percentage achieved by means of change in spandex filament denier. It was observed that by increasing denier of spandex in core spun weft yarns the increase in weft shrinkage diminishes. Dual core weft with spandex provides good elongation percentage and recovery percentage. The fabric with higher denier spandex in yarn shows a decreasing total hand values trend for summer and winter. The results depicts that the fabrics have higher THV for winter suiting fabrics as compared to summer suiting thus are more suitable for the winter wear.


2021 ◽  
Vol 2021 ◽  
pp. 102-108
Author(s):  
J. Domenech-Pastor ◽  
P. Diaz-Garcia ◽  
D. Garcia

Composites are materials formed by the combination of two or more components that acquire better properties than the ones obtained by each component on its own. Composites have been widely used in the industry due to its light weight and good mechanical properties. To improve these properties several layers of reinforced material (e.g., carbon fibre) are overlapped which produce an increase in the fibre consumption. In this sense Tailored Fibre Placement (TFP) embroidery can offer good opportunity to reduce the consumption of reinforced fibre while improving the mechanical properties due to the alignment of the fibres in the effort direction. This study analyzes the performance of carbon fibre reinforced composites with Polyester resin made with TFP embroidery technology against flexural strength efforts and without using plain woven fabrics to demonstrate that the use of reinforcement fabrics in composites can be optimized by a curved alignment of the fibers. Two different structures were embroidered with TFP technology, one simulating a woven fabric with straight unidirectional alignment of fibres in horizontal and vertical direction, and a second structure made with curvilinear alignment of carbon fibers. After the study of the flexural mechanical properties an improvement of 18% was obtained in maximum flexural strength.


2000 ◽  
Vol 9 (3) ◽  
pp. 096369350000900 ◽  
Author(s):  
J.L. Billoet ◽  
A. Cherouat

The present study concerns the modelling of the behaviour of pre-impregnated woven fabric during the forming process. The mechanical approach is based on a mesostructural model. It allows us to take into account the mechanical properties of fibres and resin and the various dominating mode of deformation of woven fabrics during the forming process. Shear and tensile tests of composite fabric specimens are proposed and compared with the experimental results in order to demonstrate the efficiency of our approach. Different numerical simulations and experiments of shaping process have been carried out in order to validate the proposed computational formulation. The various forming parameters examined have included the initial shape of fabric, fibre orientations and viscosity of resin.


2011 ◽  
Vol 201-203 ◽  
pp. 203-208
Author(s):  
Liang Chen ◽  
Shu Guang Zhao ◽  
Li Juan Zhang ◽  
Li Qiang Zhang ◽  
Wen Bing Zhang

Woven fabrics are used in a wide variety of products, and they are prized for their flexibility, formability, and high specific strength. However, modeling woven cloth is difficult due, in particular, to complex mechanical properties. In this paper, the shear behavior of plain woven fabric is studied. Through the analysis, a mechanical model is proposed which take the shearing properties into account. It uses physical-based model for animating cloth objects. Furthermore, we demonstrate the efficiency of this method with examples related to accurate cloth simulation from experimental shear curve measured on actual materials.


2014 ◽  
Vol 941-944 ◽  
pp. 1341-1344
Author(s):  
Hong Wei Yang ◽  
Heng Gao ◽  
Jian Hua Du ◽  
Shen Li Xu

The ballistic performance of UD cloth/3D fabric composite targets made of UD cloth and 3D fabric and UD cloth targets made of UD cloth were tested. The deformation of UD cloth is larger than that of 3D woven fabrics after shot and the ballistic performance of 3D woven fabric is weaker than that of UD cloth, but its structural performance and performance of resistance to multiple shoot is better than UD cloth's.


2013 ◽  
Vol 2013 ◽  
pp. 1-18 ◽  
Author(s):  
Abel Cherouat ◽  
Houman Bourouchaki

An important step in the manufacturing processes of thin composite components is the layingup of the reinforcement onto the mould surface. The prediction of the angular distortion of the reinforcement during draping and the changes in fibre orientation are essential for the understanding of the manufacture process and the evaluation of the mechanical properties of the composite structures. This paper presents an optimization-based method for the simulation of the forming processes of woven fabric reinforced composites. Two different approaches are proposed for the simulation of the draping of woven fabric onto complex geometries: geometrical and mechanical approaches. The geometrical approach is based on a fishnet model. It is well adapted to predimensioning fabrics and to give a suitable quantification of the resulting flat patterns. The mechanical approach is based on a mesostructural model. It allows us to take into account the mechanical properties of fibres and resin and the various dominating mode of deformation of woven fabrics during the forming process. Some numerical simulations of the forming process are proposed and compared with the experimental results in order to demonstrate the efficiency of our approaches.


Materials ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2221 ◽  
Author(s):  
Qiaole Hu ◽  
Hafeezullah Memon ◽  
Yiping Qiu ◽  
Yi Wei

Composite industry has long been seeking practical solutions to boost laminate through-thickness strengths and interlaminar shear strengths (ILSS), so that composite primary structures, such as stiffeners, can bear higher complex loadings and be more delamination resistant. Three dimensional (3D) woven fabrics were normally employed to render higher transverse and shear strengths, but the difficulty and high expense in producing such fabrics make it a hard choice. Based on a novel idea that the warp yarns that interlock layers of the weft yarns might provide adequate fiber crimps that would allow the interlaminar shear or radial stresses to be transferred and borne by the fibers, rather than by the relatively weaker matrix resin, thus improving the transverse strengths, this work provided a two point five dimensional (2.5D) approach as a practical solution, and demonstrated the superior transverse performances of an economical 2.5D shallow-bend woven fabric (2.5DSBW) epoxy composites, over the conventional two dimensional (2D) laminates and the costly 3D counterpart composites. This approach also produced a potential candidate to fabricate high performance stiffeners, as shown by the test results of L-beams which are common structural components of any stiffeners. This study also discovered that an alternative structure, namely a 2.5D shallow-straight woven fabric (2.5DSSW), did not show any advantages over the two control structures, which were a 2D plain weave (2DPW) and a 3D orthogonal woven fabric (3DOW) made out of the same carbon fibers. Composites of these structures in this study were conveniently fabricated using a vacuum-assisted resin infusion process (VARI). The L-beams were tested using a custom-made test fixture. The strain distribution and failure mode analysis of these beams were conducted using Digital Image Correlation (DIC) and X-ray Computed Tomography Scanning (CT). The results demonstrated that the structures containing Z-yarns or having high yarn crimps or waviness, such as in cases of 3DOW and 2.5DSBW, respectively, were shown to withstand high loadings and to resist delamination, favorable for the applications of high-performance structural composites.


2020 ◽  
Vol 54 (24) ◽  
pp. 3501-3513
Author(s):  
Mohammad Aghaei ◽  
Mahmood M Shokrieh ◽  
Reza Mosalmani

Mechanical properties of woven fabric composites are influenced by fabric geometry and harness. In the present research, woven fabric composites made of ML-506 epoxy resin and E-glass woven fabrics with three different fabric geometries (harnesses of 2, 5, and 8) were studied experimentally. The new concepts of warp and fill-fiber volume fractions were introduced. Based on these new concepts, a micromechanical model for predicting the stiffness and strength of composites made of woven fabrics was developed. An experimental program was conducted to evaluate the present model and the new concepts of warp and fill-fiber volume fractions. The results obtained by the new micromechanical model have been compared with the conducted experimental results as well as the experimental data available in the literature, and very good correlations were obtained.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1578
Author(s):  
Yeon Su Bae ◽  
In Chul Um

In this study, natural silk web and natural silk non-woven fabric were prepared mechanically using the binding character of the sericin in silk. The effect of process variables on the preparation, structure, and properties of the silk web and the non-woven fabric was examined. The reeling velocity affected the morphology and mechanical properties of the web but had almost no influence on the crystalline structure of the silk. From the viewpoint of reel-ability and the mechanical properties (work of rupture) of silk web, a reeling velocity of 39.2 m/min represented the optimal processing velocity. The porosity and swelling ratio of the silk web decreased slightly with increasing reeling velocity. Furthermore, the reeling bath temperature had a significant effect on the reel-ability of silk filaments from a silkworm cocoon. Bath temperatures ≥50 °C yielded good reel-ability (>900 m reeling length). The porosity, swelling ratio in water, and mechanical properties of the silk web and silk non-woven fabric changed only slightly with the reeling bath temperature but changed significantly with the hot press treatment. The hot-pressed silk web (i.e., silk non-woven fabric) exhibited higher tensile strength as well as lower elongation at break, porosity, and swelling ratio than the silk web.


Sign in / Sign up

Export Citation Format

Share Document