Transcription profiling of cadmium-exposed livers reveals alteration of lipid metabolism and predisposition to hepatic steatosis

Xenobiotica ◽  
2021 ◽  
pp. 1-34
Author(s):  
Chenghui Ren ◽  
Longfei Ren ◽  
Jun Yan ◽  
Zhongtian Bai ◽  
Lei Zhang ◽  
...  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
D. Serrano ◽  
J. A. Crookshank ◽  
B. S. Morgan ◽  
R. W. Mueller ◽  
M.-F. Paré ◽  
...  

Abstract In a previous study we reported that prediabetic rats have a unique gene signature that was apparent even in neonates. Several of the changes we observed, including enhanced expression of pro-inflammatory genes and dysregulated UPR and metabolism genes were first observed in the liver followed by the pancreas. In the present study we investigated further early changes in hepatic innate immunity and metabolism in two models of type 1 diabetes (T1D), the BBdp rat and NOD mouse. There was a striking increase in lipid deposits in liver, particularly in neonatal BBdp rats, with a less striking but significant increase in neonatal NOD mice in association with dysregulated expression of lipid metabolism genes. This was associated with a decreased number of extramedullary hematopoietic clusters as well as CD68+ macrophages in the liver of both models. In addition, PPARɣ and phosphorylated AMPKα protein were decreased in neonatal BBdp rats. BBdp rats displayed decreased expression of antimicrobial genes in neonates and decreased M2 genes at 30 days. This suggests hepatic steatosis could be a common early feature in development of T1D that impacts metabolic homeostasis and tolerogenic phenotype in the prediabetic liver.


2021 ◽  
Author(s):  
Haizhao Song ◽  
Xinchun Shen ◽  
Yang Zhou ◽  
Xiaodong Zheng

Supplementation of black rice anthocyanins (BRAN) alleviated high fat diet-induced obesity, insulin resistance and hepatic steatosis by improvement of lipid metabolism and modification of the gut microbiota.


2018 ◽  
Vol 315 (2) ◽  
pp. E218-E228 ◽  
Author(s):  
Difei Wang ◽  
Huiying Cong ◽  
Xiaoli Wang ◽  
Yanli Cao ◽  
Shoichiro Ikuyama ◽  
...  

PycnogenolR (PYC), a combination of active flavonoids derived from French maritime pine bark, is a natural antioxidant that has various pharmacological activities. Here, we investigated the beneficial effect of PYC on diet-induced hepatic steatosis. Apolipoprotein E (ApoE)-deficient male mice were administered PYC at oral doses of 30 or 100 mg·kg−1·day−1 for 2 wk in advance and were then fed a high-cholesterol and -fat diet (HCD) for 8 wk. Biochemical, immunohistochemical, and gene expression analyses were conducted to explore the effect of PYC on lipid metabolism in ApoE-deficient mice on a HCD. Short-term treatment with HCD in ApoE-deficient mice induced hepatic injuries, such as lipid metabolism disorder and hepatic histopathological changes. We found that PYC reduced body weight and the increase of serum lipids that had been caused by HCD. Supplementation of PYC significantly reduced lipid deposition in the liver, as shown by the lowered hepatic lipid content and histopathological lesions. We subsequently detected genes related to lipid metabolism and inflammatory cytokines. The study showed that PYC markedly suppressed the expression of genes related to hepatic lipogenesis, fatty acid uptake, and lipid storage while increasing the lipolytic gene, which thus reduced hepatic lipid content. Furthermore, PYC mainly reduced the expression of inflammatory cytokines and the infiltration of inflammatory cells, which were resistant to the development of hepatic steatosis. These results demonstrate that PYC protects against the occurrence and development of hepatic steatosis and may provide a new prophylactic approach for nonalcoholic fatty liver disease (NAFLD).


Nutrition ◽  
2016 ◽  
Vol 32 (7-8) ◽  
pp. 827-833 ◽  
Author(s):  
Haizhao Song ◽  
Tao Wu ◽  
Dongdong Xu ◽  
Qiang Chu ◽  
Dingbo Lin ◽  
...  

BMC Genomics ◽  
2008 ◽  
Vol 9 (1) ◽  
pp. 109 ◽  
Author(s):  
Ming-Ling Chang ◽  
Chau-Ting Yeh ◽  
Jeng-Chang Chen ◽  
Chau-Chun Huang ◽  
Shi-Ming Lin ◽  
...  

Gut ◽  
2016 ◽  
Vol 66 (12) ◽  
pp. 2160-2169 ◽  
Author(s):  
Frauke Beilstein ◽  
Matthieu Lemasson ◽  
Véronique Pène ◽  
Dominique Rainteau ◽  
Sylvie Demignot ◽  
...  

ObjectiveHCV is intimately linked with the liver lipid metabolism, devoted to the efflux of triacylglycerols stored in lipid droplets (LDs) in the form of triacylglycerol-rich very-low-density lipoproteins (VLDLs): (i) the most infectious HCV particles are those of lowest density due to association with triacylglycerol-rich lipoproteins and (ii) HCV-infected patients frequently develop hepatic steatosis (increased triacylglycerol storage). The recent identification of lysophosphatidylcholine acyltransferase 1 (LPCAT1) as an LD phospholipid-remodelling enzyme prompted us to investigate its role in liver lipid metabolism and HCV infectious cycle.DesignHuh-7.5.1 cells and primary human hepatocytes (PHHs) were infected with JFH1-HCV. LPCAT1 depletion was achieved by RNA interference. Cells were monitored for LPCAT1 expression, lipid metabolism and HCV production and infectivity. The density of viral particles was assessed by isopycnic ultracentrifugation.ResultsUpon HCV infection, both Huh-7.5.1 cells and PHH had decreased levels of LPCAT1 transcript and protein, consistent with transcriptional downregulation. LPCAT1 depletion in either naive or infected Huh-7.5.1 cells resulted in altered lipid metabolism characterised by LD remodelling, increased triacylglycerol storage and increased secretion of VLDL. In infected Huh-7.5.1 cells or PHH, LPCAT1 depletion increased production of the viral particles of lowest density and highest infectivity.ConclusionsWe have identified LPCAT1 as a modulator of liver lipid metabolism downregulated by HCV, which appears as a viral strategy to increase the triacylglycerol content and hence infectivity of viral particles. Targeting this metabolic pathway may represent an attractive therapeutic approach to reduce both the viral titre and hepatic steatosis.


2018 ◽  
Vol 49 (5) ◽  
pp. 1870-1884 ◽  
Author(s):  
Chian-Jiun Liou ◽  
Ciao-Han Wei ◽  
Ya-Ling Chen ◽  
Ching-Yi Cheng ◽  
Chia-Ling Wang ◽  
...  

Background/Aims: Fisetin is a naturally abundant flavonoid isolated from various fruits and vegetables that was recently identified to have potential biological functions in improving allergic airway inflammation, as well as anti-oxidative and anti-tumor properties. Fisetin has also been demonstrated to have anti-obesity properties in mice. However, the effect of fisetin on nonalcoholic fatty liver disease (NAFLD) is still elusive. Thus, the present study evaluated whether fisetin improves hepatic steatosis in high-fat diet (HFD)-induced obese mice and regulates lipid metabolism of FL83B hepatocytes in vitro. Methods: NAFLD was induced by HFD in male C57BL/6 mice. The mice were then injected intraperitoneally with fisetin for 10 weeks. In another experiment, FL83B cells were challenged with oleic acid to induce lipid accumulation and treated with various concentrations of fisetin. Results: NAFLD mice treated with fisetin had decreased body weight and epididymal adipose tissue weight compared to NAFLD mice. Fisetin treatment also reduced liver lipid droplet and hepatocyte steatosis, alleviated serum free fatty acid, and leptin concentrations, significantly decreased fatty acid synthase, and significantly increased phosphorylation of AMPKα and the production of sirt-1 and carnitine palmitoyltransferase I in the liver tissue. In vitro, fisetin decreased lipid accumulation and increased lipolysis and β-oxidation in hepatocytes. Conclusion: This study suggests that fisetin is a potential novel treatment for alleviating hepatic lipid metabolism and improving NAFLD in mice via activation of the sirt1/AMPK and β-oxidation pathway.


2020 ◽  
Vol 318 (2) ◽  
pp. R453-R467 ◽  
Author(s):  
Tracy Pioche ◽  
Fabien Skiba ◽  
Marie-Dominique Bernadet ◽  
Iban Seiliez ◽  
William Massimino ◽  
...  

Induced by overfeeding, hepatic steatosis is a process exploited for the “foie gras” production in mule ducks. To better understand the mechanisms underlying its development, the physiological responses of mule ducks overfed with corn for a duration of 11 days were analyzed. A kinetic analysis of glucose and lipid metabolism and cell protection mechanisms was performed on 96 male mule ducks during overfeeding with three sampling times (after the 4th, the 12th, and the 22nd meal). Gene expression and protein analysis realized on the liver, muscle, and abdominal fat showed an activation of a cholesterol biosynthetic pathway during the complete overfeeding period mainly in livers with significant correlations between its weight and its cholesterolemia ( r = 0.88; P < 0.0001) and between the liver weight and the hmgcr and soat1 expression ( r = 0.4, P < 0.0001 and r = 0.67; P < 0.0001, respectively). Results also revealed an activation of insulin and amino acid cells signaling a pathway suggesting that ducks boost insulin sensitivity to raise glucose uptake and use via glycolysis and lipogenesis. Cellular stress analysis revealed an upregulation of key autophagy-related gene expression atg8 and sqstm1( P < 0.0001) during the complete overfeeding period, mainly in the liver, in contrast to an induction of cyp2e1( P < 0.0001), suggesting that autophagy could be suppressed during steatosis development. This study has highlighted different mechanisms enabling mule ducks to efficiently handle the starch overload by keeping its liver in a nonpathological state. Moreover, it has revealed potential biomarker candidates of hepatic steatosis as plasma cholesterol for the liver weight.


Author(s):  
Kewei Wang

Steatosis is an early characteristic in the pathogenesis of fatty liver disease (FLD). Mechanisms of hepatic steatosis are aetiology-dependent. Activation of autophagy in liver ameliorates hepatic steatosis. A modulation of hepatic autophagy affects the degree of hepatocyte steatosis and the progression of FLD as demonstrated by pre-clinical models and clinical trials. This review summarises recent advances on pathophysiological roles of autophagy in hepatic lipid metabolism. A comprehensive regulation of autophagic networks holds promise for the improvement of hepatic steatosis. Autophagic signalling pathway may be a novel therapeutic target against FLD.Highlights: •Hepatic steatosis is a pathological condition wherein vacuoles of triglyceride (TG) fat are overaccumulated in liver because of abnormal metabolism of lipids.•Hepatic autophagy regulates lipid metabolism as demonstrated by macrolipophagy in response to starvation and hepatic overabundance of TG in obesity.•Autophagic signals are closely associated with apoptotic pathways. There is distinctive relationship between hepatic autophagy and apoptosis, which affects the progression of fatty liver.•Regulation of autophagic process can be a novel therapeutic strategy for fatty liver disease.


Sign in / Sign up

Export Citation Format

Share Document