scholarly journals Altered expression patterns of lipid metabolism genes in an animal model of HCV core-related, nonobese, modest hepatic steatosis

BMC Genomics ◽  
2008 ◽  
Vol 9 (1) ◽  
pp. 109 ◽  
Author(s):  
Ming-Ling Chang ◽  
Chau-Ting Yeh ◽  
Jeng-Chang Chen ◽  
Chau-Chun Huang ◽  
Shi-Ming Lin ◽  
...  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
D. Serrano ◽  
J. A. Crookshank ◽  
B. S. Morgan ◽  
R. W. Mueller ◽  
M.-F. Paré ◽  
...  

Abstract In a previous study we reported that prediabetic rats have a unique gene signature that was apparent even in neonates. Several of the changes we observed, including enhanced expression of pro-inflammatory genes and dysregulated UPR and metabolism genes were first observed in the liver followed by the pancreas. In the present study we investigated further early changes in hepatic innate immunity and metabolism in two models of type 1 diabetes (T1D), the BBdp rat and NOD mouse. There was a striking increase in lipid deposits in liver, particularly in neonatal BBdp rats, with a less striking but significant increase in neonatal NOD mice in association with dysregulated expression of lipid metabolism genes. This was associated with a decreased number of extramedullary hematopoietic clusters as well as CD68+ macrophages in the liver of both models. In addition, PPARɣ and phosphorylated AMPKα protein were decreased in neonatal BBdp rats. BBdp rats displayed decreased expression of antimicrobial genes in neonates and decreased M2 genes at 30 days. This suggests hepatic steatosis could be a common early feature in development of T1D that impacts metabolic homeostasis and tolerogenic phenotype in the prediabetic liver.


2020 ◽  
Author(s):  
Alexander Sheh ◽  
Stephen C. Artim ◽  
Monika A. Burns ◽  
Jose Arturo Molina-Mora ◽  
Mary Anne Lee ◽  
...  

AbstractChronic gastrointestinal (GI) diseases are the most common diseases in captive marmosets. The gut microbiome of healthy (n=91), inflammatory bowel disease (IBD) (n=59), and duodenal ulcer/stricture (n=23) captive marmosets was characterized. Healthy marmosets exhibited a “humanized,” Bacteroidetes-dominant microbiome. Despite standardized conditions, cohorts subdivided into Prevotella- and Bacteroides-dominant groups based on marmoset source. IBD was highest in a Prevotella-dominant cohort while strictures were highest in a Bacteroides-dominant cohort. Stricture-associated dysbiosis was characterized by Anaerobiospirillum loss and Clostridium perfringens increases. Stricture tissue presented upregulation of lipid metabolism genes and increased abundance of C. perfringens, a causative agent of GI diseases and intestinal strictures in humans. IBD was associated with a lower Bacteroides:P. copri ratio within each source. Consistent with Prevotella-linked diseases, pro-inflammatory genes were upregulated. This report highlights the humanization of the captive marmoset microbiome and its potential as a “humanized” animal model of C. perfringens-induced enteritis/strictures and P. copri-associated IBD.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Blanca Martínez Soriano ◽  
Antonio Güemes ◽  
Guillermo Pola ◽  
Azucena Gonzalo ◽  
Pilar Palacios Gasós ◽  
...  

Introduction. The hepatic steatosis of the nonalcoholic origin or NAFLD is increasing at present, particularly in Western countries, parallel to the increase in obesity, constituting one of the most prevalent hepatic processes in the Western society. Melatonin has been successfully tested in experimental models in mice as a drug capable of reversing steatosis. The effect of melatonin on fat metabolism can be summarized as a decrease in lipid peroxidation and a decrease in oxidative stress, biochemical phenomena intimately related to fat deposition in the hepatocyte. There are hardly any studies in large animals. Objective. In this study, we investigate the effects of melatonin administered orally at a dose of 10 mg/kg/day to reverse established hepatic steatosis induced by a special diet in a porcine animal model. Materials and Methods. We analyze the parameters of oxidative stress: malondialdehyde (MDA), 4-hydroxyalkenals (4-HDA), and carbonyls, degree of fat infiltration (analyzed by direct vision by a pathologist and by means of a computer program of image treatment), and serological parameters of lipid metabolism and hepatic damage. These parameters were analyzed in animals to which hepatic steatosis was induced by means of dietary modifications. Results. We have not been able to demonstrate globally a beneficial effect of melatonin in the improvement or reversal of liver steatosis once established, induced by diet in a porcine animal model. However, we have found several signs of improvement at the histological level, at the level of lipid metabolism, and at the level of oxidative stress parameters. We have verified in our study that, in the histological analysis of the liver sample by means of the program image treatment (free of subjectivity) of the animals that continue with the diet, those that consume melatonin do not increase steatosis as much as those that do not consume it significantly (p=0.002). Regarding the parameters of oxidative stress, MDA modifies in a significant manner within the group of animals that continue with the diet and take melatonin (p=0.004). As for lipid metabolism, animals that maintain the steatotic diet and take melatonin lower total and LDL cholesterol levels and increase HDL levels, although these results do not acquire statistical significance. Conclusions. In this study, it has not been possible to demonstrate a beneficial effect of melatonin in the improvement or reversal of liver steatosis once established and induced by diet in the porcine model. It is true that signs of improvement have been found at the histological level, at the level of lipid metabolism, and at the level of oxidative stress phenomena, when comparing animals with established steatosis that are treated with melatonin with those who do not take it. This work is the first study conducted in a large animal model in which the effect of melatonin is studied as a treatment in the reversal of established hepatic steatosis.


2021 ◽  
Vol 22 (12) ◽  
pp. 6430
Author(s):  
Susana Alexandre-Moreno ◽  
Juan-Manuel Bonet-Fernández ◽  
Raquel Atienzar-Aroca ◽  
José-Daniel Aroca-Aguilar ◽  
Julio Escribano

CYP1B1 loss of function (LoF) is the main known genetic alteration present in recessive primary congenital glaucoma (PCG), an infrequent disease characterized by delayed embryonic development of the ocular iridocorneal angle; however, the underlying molecular mechanisms are poorly understood. To model CYP1B1 LoF underlying PCG, we developed a cyp1b1 knockout (KO) zebrafish line using CRISPR/Cas9 genome editing. This line carries the c.535_667del frameshift mutation that results in the 72% mRNA reduction with the residual mRNA predicted to produce an inactive truncated protein (p.(His179Glyfs*6)). Microphthalmia and jaw maldevelopment were observed in 23% of F0 somatic mosaic mutant larvae (144 hpf). These early phenotypes were not detected in cyp1b1-KO F3 larvae (144 hpf), but 27% of adult (four months) zebrafish exhibited uni- or bilateral craniofacial alterations, indicating the existence of incomplete penetrance and variable expressivity. These phenotypes increased to 86% in the adult offspring of inbred progenitors with craniofacial defects. No glaucoma-related phenotypes were observed in cyp1b1 mutants. Transcriptomic analyses of the offspring (seven dpf) of cyp1b1-KO progenitors with adult-onset craniofacial defects revealed functionally enriched differentially expressed genes related to extracellular matrix and cell adhesion, cell growth and proliferation, lipid metabolism (retinoids, steroids and fatty acids and oxidation–reduction processes that include several cytochrome P450 genes) and inflammation. In summary, this study shows the complexity of the phenotypes and molecular pathways associated with cyp1b1 LoF, with species dependency, and provides evidence for the dysregulation of extracellular matrix gene expression as one of the mechanisms underlying the pathogenicity associated with cyp1b1 disruption.


2018 ◽  
Vol 9 (2) ◽  
pp. 906-916 ◽  
Author(s):  
Shu-Fang Xia ◽  
Jing Shao ◽  
Shu-Ying Zhao ◽  
Yu-Yu Qiu ◽  
Li-Ping Teng ◽  
...  

Niga-ichigoside F1 ameliorated high-fat diet-induced hepatic steatosis by increasing Nrf2 nuclear translocation to regulate lipid metabolism genes expression in livers of C57BL/6J mice.


Author(s):  
Susana Alexandre-Moreno ◽  
Juan-Manuel Bonet-Fernández ◽  
Raquel Atienzar-Aroca ◽  
José-Daniel Aroca-Aguilar ◽  
Julio Escribano

CYP1B1 loss-of-function (LoF) is the main known genetic alteration present in recessive primary congenital glaucoma (PCG), an infrequent disease characterized by delayed embryonic development of the ocular iridocorneal angle and caused by poorly understood molecular mechanisms. To model CYP1B1 LoF underlying PCG, we developed a cyp1b1 knockout (KO) zebrafish line using CRISPR/Cas9 genome editing. This line carries the c.535_667del frameshift mutation that results in a 72% mRNA reduction with residual mRNA predicted to produce an inactive truncated protein (p.(His179Glyfs*6)). Craniofacial defects and jaw maldevelopment were observed in 23% of somatic mosaic F0 crispant larvae (144 hpf). These early phenotypes were not detected in KO F3 larvae (144 hpf) but 27% of adult fishes (4 months) showed uni or bilateral craniofacial alterations, indicating the existence of incomplete penetrance and variable expressivity. These phenotypes increased to 86% in the adult offspring of inbred progenitors with craniofacial defects. No glaucoma-related phenotypes were observed in the cyp1b1 mutants. Transcriptomic analyses of the offspring (7dpf) of KO cyp1b1 progenitors with adult-onset craniofacial defects revealed that differentially expressed genes were functionally enriched in groups related with extracellular matrix and cell adhesion, cell growth and proliferation, lipid metabolism (retinoids, steroids, and fatty acids, and oxidation-reduction processes which included several cytochrome P450 genes) and inflammation. In summary, this study shows the complexity of phenotypes and molecular pathways associated with cyp1b1 LoF, with species-dependency, and provides evidence for dysregulation of extracellular matrix gene expression as one of the mechanisms underlaying pathogenicity associated with cyp1b1 disruption.


2017 ◽  
Vol 65 (7) ◽  
pp. 1443-1455 ◽  
Author(s):  
Christopher P. Mattison ◽  
Ruhi Rai ◽  
Robert E. Settlage ◽  
Doug J. Hinchliffe ◽  
Crista Madison ◽  
...  

2021 ◽  
Vol 10 (10) ◽  
pp. 2219
Author(s):  
Monika Prill ◽  
Agnieszka Karkucinska-Wieckowska ◽  
Magdalena Lebiedzinska-Arciszewska ◽  
Giampaolo Morciano ◽  
Agata Charzynska ◽  
...  

Numerous papers have reported altered expression patterns of Ras and/or ShcA proteins in different types of cancers. Their level can be potentially associated with oncogenic processes. We analyzed samples of pediatric brain tumors reflecting different groups such as choroid plexus tumors, diffuse astrocytic and oligodendroglial tumors, embryonal tumors, ependymal tumors, and other astrocytic tumors as well as tumor malignancy grade, in order to characterize the expression profile of Ras, TrkB, and three isoforms of ShcA, namely, p66Shc, p52Shc, and p46Shc proteins. The main aim of our study was to evaluate the potential correlation between the type of pediatric brain tumors, tumor malignancy grade, and the expression patterns of the investigated proteins.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2482
Author(s):  
Ching-Feng Chiu ◽  
Hsin-Yi Chang ◽  
Chun-Yine Huang ◽  
Chen-Zou Mau ◽  
Tzu-Ting Kuo ◽  
...  

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with a 5-year survival rate of <8%. Therefore, finding new treatment strategies against PDAC cells is an imperative issue. Betulinic acid (BA), a plant-derived natural compound, has shown great potential to combat cancer owing to its versatile physiological functions. In this study, we observed the impacts of BA on the cell viability and migratory ability of PDAC cell lines, and screened differentially expressed proteins (DEPs) by an LC-MS/MS-based proteomics analysis. Our results showed that BA significantly inhibited the viability and migratory ability of PDAC cells under a relatively low dosage without affecting normal pancreatic cells. Moreover, a functional analysis revealed that BA-induced downregulation of protein clusters that participate in mitochondrial complex 1 activity and oxidative phosphorylation, which was related to decreased expressions of RNA polymerase mitochondrial (POLRMT) and translational activator of cytochrome c oxidase (TACO1), suggesting that the influence on mitochondrial function explains the effect of BA on PDAC cell growth and migration. In addition, BA also dramatically increased Apolipoprotein A1 (APOA1) expression and decreased NLR family CARD domain-containing protein 4 (NLRC4) expression, which may be involved in the dampening of PDAC migration. Notably, altered expression patterns of APOA1 and NLRC4 indicated a favorable clinical prognosis of PDAC. Based on these findings, we identified potential proteins and pathways regulated by BA from a proteomics perspective, which provides a therapeutic window for PDAC.


Sign in / Sign up

Export Citation Format

Share Document