scholarly journals Anisotropic PLGA microsphere/PVA hydrogel composite with aligned macroporous structures for directed cell adhesion and proliferation

Author(s):  
Shuang Liu ◽  
Xiaohu Zhou ◽  
Lei Nie ◽  
Youli Wang ◽  
Zhihai Hu ◽  
...  
Author(s):  
Mi Wu ◽  
Zhengyi Han ◽  
Wen Liu ◽  
Jinrong Yao ◽  
Bingjiao Zhao ◽  
...  

LAPONITE® (LAP) nanoplatelets were incorporated within a regenerated silk fibroin (RSF) microfibrous mat via electrospinning, which exhibited better cell adhesion and proliferation of bone marrow mesenchymal stem cells (BMSCs) than the pristine RSF ones.


2014 ◽  
Vol 118 (26) ◽  
pp. 14464-14470 ◽  
Author(s):  
Hsun-Yun Chang ◽  
Chih-Chieh Huang ◽  
Kang-Yi Lin ◽  
Wei-Lun Kao ◽  
Hua-Yang Liao ◽  
...  

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Alice C. Taylor ◽  
Citlali Helenes González ◽  
Benjamin S. Miller ◽  
Robert J. Edgington ◽  
Patrizia Ferretti ◽  
...  

2018 ◽  
Vol 9 (4) ◽  
pp. 62 ◽  
Author(s):  
Gianluca Turco ◽  
Davide Porrelli ◽  
Eleonora Marsich ◽  
Federica Vecchies ◽  
Teresa Lombardi ◽  
...  

Background: Bone substitutes, either from human (autografts and allografts) or animal (xenografts) sources, suffer from inherent drawbacks including limited availability or potential infectivity to name a few. In the last decade, synthetic biomaterials have emerged as a valid alternative for biomedical applications in the field of orthopedic and maxillofacial surgery. In particular, phosphate-based bone substitution materials have exhibited a high biocompatibility due to their chemical similitude with natural hydroxyapatite. Besides the nature of the biomaterial, its porous and interconnected architecture is essential for a correct osseointegration. This performance could be predicted with an extensive characterization of the biomaterial in vitro. Methods: In this study, we compared the biological, chemical, and structural features of four different commercially available bone substitutes derived from an animal or a synthetic source. To this end, µ-CT and SEM were used to describe the biomaterials structure. Both FTIR and EDS analyses were carried out to provide a chemical characterization. The results obtained by these techniques were correlated with cell adhesion and proliferation of the osteosarcoma MG-63 human cell line cultured in vitro. Results: The findings reported in this paper indicate a significant influence of both the nature and the structure of the biomaterials in cell adhesion and proliferation, which ultimately could affect the clinical performance of the biomaterials. Conclusions: The four commercially available bone substitutes investigated in this work significantly differed in terms of structural features, which ultimately influenced in vitro cell proliferation and may so affect the clinical performance of the biomaterials.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Yanbo Zhang ◽  
Ruiyan Li ◽  
Wenzheng Wu ◽  
Yun’an Qing ◽  
Xiongfeng Tang ◽  
...  

The purpose of this work was to investigate the porous polyetherimide scaffold (P-PEIs) as an alternative biopolymer for bone tissue engineering. The P-PEIs was fabricated via solvent casting and particulate leaching technique. The morphology, phase composition, roughness, hydrophilicity, and biocompatibility of P-PEIs were evaluated and compared with polyetherimide (PEI) and Ti6Al4V disks. P-PEIs showed a biomimetic porous structure with a modulus of 78.95 ± 2.30 MPa. The water contact angle of P-PEIs was 75.4 ± 3.39°, which suggested that P-PEIs had a wettability surface. Moreover, P-PEIs provides a feasible environment for cell adhesion and proliferation. The relative cell adhesion capability and the cell morphology on P-PEIs were better than PEI and Ti6Al4V samples. Furthermore, the MC3T3-E1 cells on P-PEIs showed faster proliferation rate than other groups. It was revealed that the P-PEIs could be a potential material for the application of bone regeneration.


Sign in / Sign up

Export Citation Format

Share Document