Synthesis of PtSn nanoparticles on carbon materials by different preparation methods for selective catalytic hydrogenation of citral

2019 ◽  
Vol 207 (8) ◽  
pp. 1074-1091
Author(s):  
Julieta Stassi ◽  
Jonathan Méndez ◽  
Irene Vilella ◽  
Sergio de Miguel ◽  
Patricia Zgolicz
2017 ◽  
Vol 41 (18) ◽  
pp. 10165-10173 ◽  
Author(s):  
Xueliang Cui ◽  
Qiaolan Zhang ◽  
Meng Tian ◽  
Zhengping Dong

Novel γ-Fe2O3-nanoparticle modified N-doped porous carbon materials were facilely prepared and used for efficient catalytic hydrogenation of nitroaromatic compounds.


2020 ◽  
Vol 16 ◽  
pp. 1188-1202 ◽  
Author(s):  
Melanie Iwanow ◽  
Tobias Gärtner ◽  
Volker Sieber ◽  
Burkhard König

The preparation of activated carbon materials is discussed along selected examples of precursor materials, of available production and modification methods and possible characterization techniques. We evaluate the preparation methods for activated carbon materials with respect to its use as catalyst support and identify important parameters for metal loading. The considered carbon sources include coal, wood, agricultural wastes or biomass as well as ionic liquids, deep eutectic solvents or precursor solutions. The preparation of the activated carbon usually involves pre-treatment steps followed by physical or chemical activation and application dependent modification. In addition, highly porous materials can also be produced by salt templating or ultrasonic spray pyrolysis as well as by microwave irradiation. The resulting activated carbon materials are characterized by a variety of techniques such as SEM, FTIR, nitrogen adsorption, Boehm titrations, adsorption of phenol, methylene blue and iodine, TPD, CHNS/O elemental analysis, EDX, XPS, XRD and TGA.


2018 ◽  
Vol 127 (1) ◽  
pp. 25-39 ◽  
Author(s):  
Oleg V. Belousov ◽  
Valery E. Tarabanko ◽  
Roman V. Borisov ◽  
Irina L. Simakova ◽  
Anatoly M. Zhyzhaev ◽  
...  

Author(s):  
Jan Zarzycki ◽  
Joseph Szroeder

The mammary gland ultrastructure in various functional states is the object of our investigations. The material prepared for electron microscopic examination by the conventional chemical methods has several limitations, the most important are the protein denaturation processes and the loss of large amounts of chemical constituents from the cells. In relevance to this,one can't be sure about a degree the observed images are adequate to the realy ultrastructure of a living cell. To avoid the disadvantages of the chemical preparation methods,some autors worked out alternative physical methods based on tissue freezing / freeze-drying, freeze-substitution, freeze-eatching techniqs/; actually the technique of cryoultraraicrotomy,i,e.cutting ultrathin sections from deep frozen specimens is assented as a complete alternative method. According to the limitations of the routine plastic embbeding methods we were interested to analize the mammary gland ultrastructure during lactation by the cryoultramicrotomy method.


Author(s):  
L. Gandolfi ◽  
J. Reiffel

Calculations have been performed on the contrast obtainable, using the Scanning Transmission Electron Microscope, in the observation of thick specimens. Recent research indicates a revival of an earlier interest in the observation of thin specimens with the view of comparing the attainable contrast using both types of specimens.Potential for biological applications of scanning transmission electron microscopy has led to a proliferation of the literature concerning specimen preparation methods and the controversy over “to stain or not to stain” in combination with the use of the dark field operating mode and the same choice of technique using bright field mode of operation has not yet been resolved.


Author(s):  
Linda C. Sawyer

Recent liquid crystalline polymer (LCP) research has sought to define structure-property relationships of these complex new materials. The two major types of LCPs, thermotropic and lyotropic LCPs, both exhibit effects of process history on the microstructure frozen into the solid state. The high mechanical anisotropy of the molecules favors formation of complex structures. Microscopy has been used to develop an understanding of these microstructures and to describe them in a fundamental structural model. Preparation methods used include microtomy, etching, fracture and sonication for study by optical and electron microscopy techniques, which have been described for polymers. The model accounts for the macrostructures and microstructures observed in highly oriented fibers and films.Rod-like liquid crystalline polymers produce oriented materials because they have extended chain structures in the solid state. These polymers have found application as high modulus fibers and films with unique properties due to the formation of ordered solutions (lyotropic) or melts (thermotropic) which transform easily into highly oriented, extended chain structures in the solid state.


Author(s):  
Anne F. Bushnell ◽  
Sarah Webster ◽  
Lynn S. Perlmutter

Apoptosis, or programmed cell death, is an important mechanism in development and in diverse disease states. The morphological characteristics of apoptosis were first identified using the electron microscope. Since then, DNA laddering on agarose gels was found to correlate well with apoptotic cell death in cultured cells of dissimilar origins. Recently numerous DNA nick end labeling methods have been developed in an attempt to visualize, at the light microscopic level, the apoptotic cells responsible for DNA laddering.The present studies were designed to compare various tissue processing techniques and staining methods to assess the occurrence of apoptosis in post mortem tissue from Alzheimer's diseased (AD) and control human brains by DNA nick end labeling methods. Three tissue preparation methods and two commercial DNA nick end labeling kits were evaluated: the Apoptag kit from Oncor and the Biotin-21 dUTP 3' end labeling kit from Clontech. The detection methods of the two kits differed in that the Oncor kit used digoxigenin dUTP and anti-digoxigenin-peroxidase and the Clontech used biotinylated dUTP and avidinperoxidase. Both used 3-3' diaminobenzidine (DAB) for final color development.


Sign in / Sign up

Export Citation Format

Share Document