MULTIPLE STEADY STATES OF ADIABATIC FIXED-BED REACTORS

1993 ◽  
Vol 126 (1) ◽  
pp. 155-177 ◽  
Author(s):  
RICHARD C. DOUGHERTY ◽  
JOHN R. THYGESON ◽  
RAYMOND HU
Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3804
Author(s):  
Jakub Szyman

The paper reports the occurrence of multiple steady-state zones in most of the constructions of fixed-bed photocatalytic reactors. Such a phenomenon has not been ever observed in a field of photocatalytic reactors. The simulation has been provided for a common case in a photocatalysis—the degradation of colored compounds. The mathematical model of the photocatalytic reactor with immobilized bed has been stated by a simple ideal mixing model (analogous to the CSTR model). The solution has been continued by the two parameters—the Damköhler number and the absorption coefficient related to the inlet stream concentration. Some branches of steady states include the limit point. The performed two-parametric continuation of the limit point showed the cusp bifurcation point. Besides the numerical simulation, the physical explanation of the observed phenomenon has been provided; the multiple steady-states occurrence is controlled by light absorption–reaction rate junction. When the reaction rate is limited by the light absorption, we can say that a light barrier occurs. The dynamical simulations show that when the process is operated in a field of multiple steady states, the overall reactor efficiency is related to the reactor set-up mode.


2015 ◽  
Vol 8 (1) ◽  
pp. 5-10 ◽  
Author(s):  
Ján Janošovský ◽  
Juraj Labovský ◽  
Ľudovít Jelemenský

Abstract Hazard and operability (HAZOP) analysis is a highly disciplined process hazard analysis (PHA) technique based on the exploration of the effects of process variables deviations. Inconveniences of a conventional HAZOP study are its time-consuming character and high cost. The principal objective of this paper is to present a new methodology for hazard identification of a selected chemical production process. Model-based HAZOP study is a very robust tool for predicting a systems response to deviations from design or operation conditions. An approach based on the mathematical modelling of a process can help to identify sources of hazard that could be overlooked by conventional PHA techniques. A case study focused on the multiple steady states phenomenon in an ammonia synthesis reactor is presented. The process simulation was performed using the Aspen HYSYS v8.4 process modelling environment. Nonlinear behaviour of the investigated fixed-bed reactor system was confirmed by an accident in an industrial ammonia synthesis reactor. The analysed system exhibited the feed temperature and pressure dependence of various operation parameters. This fact indicates the presence of multiple steady states. From the safety analysis point of view, switching between steady states can lead to process hazards.


1990 ◽  
Vol 22 (1-2) ◽  
pp. 347-352 ◽  
Author(s):  
C. Paffoni ◽  
B. Védry ◽  
M. Gousailles

The Paris Metropolitan area, which contains over eight million inhabitants, has a daily output of about 3 M cu.meters of wastewater, the purification of which is achieved by SIAAP (Paris Metropolitan Area Sewage Service) in both Achères and Valenton plants. The carbon pollution is eliminated from over 2 M cu.m/day at Achères. In order to improve the quality of output water, its tertiary nitrification in fixed-bed reactors has been contemplated. The BIOFOR (Degremont) and BIOCARBONE (OTV) processes could be tested in semi-industrial pilot reactors at the CRITER research center of SIAAP. At a reference temperature of 13°C, the removed load is approximately 0.5 kg N NH4/m3.day. From a practical point of view, it may be asserted that in such operating conditions as should be at the Achères plant, one cubic meter of filter can handle the tertiary nitification of one cubic meter of purified water per hour at an effluent temperature of 13°C.


1995 ◽  
Vol 31 (9) ◽  
pp. 137-144 ◽  
Author(s):  
T. Miyahara ◽  
M. Takano ◽  
T. Noike

The relationship between the filter media and the behaviour of anaerobic bacteria was studied using anaerobic fixed-bed reactors. At an HRT of 48 hours, the number of suspended acidogenic bacteria was higher than those attached to the filter media. On the other hand, the number of attached methanogenic bacteria was more than ten times as higher than that of suspended ones. The numbers of suspended and deposited acidogenic and methanogenic bacteria in the reactor operated at an HRT of 3 hours were almost the same as those in the reactor operated at an HRT of 48 hours. Accumulation of attached bacteria was promoted by decreasing the HRT of the reactor. The number of acidogenic bacteria in the reactor packed sparsely with the filter media was higher than that in the closely packed reactor. The number of methanogenic bacteria in the sparsely packed reactor was lower than that in the closely packed reactor.


Sign in / Sign up

Export Citation Format

Share Document