A stochastic model of grain size distribution during dynamic recrystallization

1999 ◽  
Vol 79 (5) ◽  
pp. 1217-1231 ◽  
Author(s):  
Ichiko Shimizu
2016 ◽  
Vol 879 ◽  
pp. 1794-1799 ◽  
Author(s):  
Guillaume Smagghe ◽  
David Piot ◽  
Frank Montheillet ◽  
G. Perrin ◽  
A. Montouchet ◽  
...  

A mean field model for discontinuous dynamic recrystallization (DDRX) has been developed and chained with a post-dynamic recrystallization (PDRX) model to predict transient and steady-state flow stresses and average grain sizes. Numerical results are compared with experimental data obtained on a 304L stainless steel yielding to a good agreement in terms of average grain size. However an unrealistic grain-size distribution is observed using DDRX, which affects results of the PDRX model. This result is discussed with respect to the fundamental equations of DDRX.


1970 ◽  
Vol 2 (2) ◽  
pp. K69-K73 ◽  
Author(s):  
M. Reinbold ◽  
H. Hoffmann

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2849
Author(s):  
Marcin Jan Dośpiał

This paper presents domain and structure studies of bonded magnets made from nanocrystalline Nd-(Fe, Co)-B powder. The structure studies were investigated using scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), Mössbauer spectroscopy and X-ray diffractometry. On the basis of performed qualitative and quantitative phase composition studies, it was found that investigated alloy was mainly composed of Nd2(Fe-Co)14B hard magnetic phase (98 vol%) and a small amount of Nd1.1Fe4B4 paramagnetic phase (2 vol%). The best fit of grain size distribution was achieved for the lognormal function. The mean grain size determined from transmission electron microscopy (TEM) images on the basis of grain size distribution and diffraction pattern using the Bragg equation was about ≈130 nm. HRTEM images showed that over-stoichiometric Nd was mainly distributed on the grain boundaries as a thin amorphous border of 2 nm in width. The domain structure was investigated using a scanning electron microscope and metallographic light microscope, respectively, by Bitter and Kerr methods, and by magnetic force microscopy. Domain structure studies revealed that the observed domain structure had a labyrinth shape, which is typically observed in magnets, where strong exchange interactions between grains are present. The analysis of the domain structure in different states of magnetization revealed the dynamics of the reversal magnetization process.


Sign in / Sign up

Export Citation Format

Share Document