Experimental investigation of injection timing on the performance and exhaust emissions of a rubber seed oil blend fuel in constant speed diesel engine

2017 ◽  
Vol 40 (3) ◽  
pp. 292-294 ◽  
Author(s):  
N. Karthik ◽  
R. Rajasekar ◽  
R. Siva ◽  
G. Mathiselvan
Author(s):  
Vishal V Patil ◽  
Ranjit S Patil

The objective of present study is to evaluate the combustion, performance, and emission characteristics of refined biodiesel (biofuel) such as rubber seed oil methyl ester with the partial addition of n-butanol (butanol) in it in a single cylinder four stroke diesel engine operated at a constant speed of 1500 rpm. Various characteristics of butanol–rubber seed oil methyl ester blends with varying volume percentage of butanol such as 5, 10, 15, and 20 in butanol–rubber seed oil methyl ester blends were compared with the characteristics of neat rubber seed oil methyl ester (100%) and neat diesel (100%) at various load conditions on engine (such as 0%, 25%, 50%, 75%, and 100%) for the compression ratio 18. It is found that brake specific fuel consumption was increased by 17% with an increase in butanol content from 5% to 20% in butanol–rubber seed oil methyl ester blends at full load condition. Brake thermal efficiency was decreased by 14% with an increase in butanol content from 5% to 20% in butanol–rubber seed oil methyl ester blends at full load condition. Carbon monoxide and HC emissions were found to be negligible, i.e. less than 0.1% and 35 ppm, respectively, for all selected fuels. NOx emissions were decreased by 10% with an increase in butanol content from 5% to 20% in butanol–rubber seed oil methyl ester blends at full load condition. Various characteristics were compared for six fuels (neat rubber seed oil methyl ester, four renewable butanol–rubber seed oil methyl ester blends, and neat diesel) in order to finalize the promising alternate sustainable renewable fuel in place of shortly diminishing conventional diesel fuel in order to provide the solution for increase in demand and price of conventional fuel (diesel) for power generation and to reduce the serious issues concerned with environmental pollution due to usage of neat diesel.


Author(s):  
Seppo A. Niemi ◽  
Juha M. Tyrva¨inen ◽  
Mika J. Laure´n ◽  
Va¨ino¨ O. K. Laiho

In the near future, crude oil based fuels must little by little be replaced by biofuels both in the region of the European Union (EU) and in the United States. Bearing this in mind, a Finnish-made off-road diesel engine was tested with a biofuel-diesel fuel blend in the Internal Combustion Engine (ICE) Laboratory of Turku Polytechnic, Finland. The biofuel was cold-pressed mustard seed oil (MSO). The engine operation, performance and exhaust emissions were investigated using a blend of 30 mass-% MSO and 70 mass-% diesel fuel oil (DFO). The injection timing of the engine was retarded considerably in order to reduce NOx emissions drastically. The main target was then to find out, whether the blended oxygen containing MSO would speed up the combustion so that the particulate matter (PM) emissions would remain unchanged or even decrease despite the injection retardation. As secondary tasks of the study, the NOx readings of the CLD and FTIR analyzers were compared, and exhaust contents of unregulated compounds were determined. Retarding the injection timing resulted in a significant decrease of NOx emissions, but in an increase in smoke, as expected. At retarded timing, the NOx emissions remained almost unchanged, but the amount of smoke decreased when the engine was run with the fuel blend instead of DFO. At retarded timing at rated speed, the number of ultra-fine particles decreased, but the amount of large particles increased with DFO at full load. At 10% load, however, the particle number increased in the entire particle size range due to retardation. At both loads, the use of the fuel blend slightly reduced larger particles, whereas the number of small particles somewhat increased. At full load at an intermediate speed of 1500 rpm, the PM results were very similar to those obtained at rated speed. At 10% load with DFO, however, the injection retardation led to a higher number of larger particles, the smaller particles being at almost an unchanged level. With the fuel blend, the particle number was now higher within almost the whole particle diameter range than with DFO. Considerably higher NO2 contents were usually detected with FTIR than with CLD. The shape of the NOx result curves were rather similar independent of which one of the analyzers was used for measurements. The NOx contents were, however, generally some ten ppms higher with FTIR. The exhaust contents of unregulated compounds were usually low.


Fuel ◽  
2021 ◽  
Vol 285 ◽  
pp. 119255 ◽  
Author(s):  
Sudalaiyandi K ◽  
Karthick Alagar ◽  
Vignesh Kumar R ◽  
Manoj Praveen VJ ◽  
Madhu P

Sign in / Sign up

Export Citation Format

Share Document