Extraction of urban power lines and potential hazard analysis from mobile laser scanning point clouds

2020 ◽  
Vol 41 (9) ◽  
pp. 3411-3428 ◽  
Author(s):  
Zhenwei Shi ◽  
Yi Lin ◽  
Hui Li
2019 ◽  
Vol 3 (2) ◽  
pp. 40 ◽  
Author(s):  
Ulrike Wissen Hayek ◽  
Kilian Müller ◽  
Fabian Göbel ◽  
Peter Kiefer ◽  
Reto Spielhofer ◽  
...  

The perception of the visual landscape impact is a significant factor explaining the public’s acceptance of energy infrastructure developments. Yet, there is lack of knowledge how people perceive and accept power lines in certain landscape types and in combination with wind turbines, a required setting to achieve goals of the energy turnaround. The goal of this work was to demonstrate how 3D point cloud visualizations could be used for an eye tracking study to systematically investigate the perception of landscape scenarios with power lines. 3D visualizations of near-natural and urban landscapes were prepared based on data from airborne and terrestrial laser scanning. These scenes were altered with varying amounts of the respective infrastructure, and they provided the stimuli in a laboratory experiment with 49 participants. Eye tracking and questionnaires served for measuring the participants’ responses. The results show that the point cloud-based simulations offered suitable stimuli for the eye tracking study. Particularly for the analysis of guided perceptions, the approach fostered an understanding of disturbing landscape elements. A comparative in situ eye tracking study is recommended to further evaluate the quality of the point cloud simulations, whether they produce similar responses as in the real world.


Author(s):  
Shanxin Zhang ◽  
Cheng Wang ◽  
Zhuang Yang ◽  
Yiping Chen ◽  
Jonathan Li

Research on power line extraction technology using mobile laser point clouds has important practical significance on railway power lines patrol work. In this paper, we presents a new method for automatic extracting railway power line from MLS (Mobile Laser Scanning) data. Firstly, according to the spatial structure characteristics of power-line and trajectory, the significant data is segmented piecewise. Then, use the self-adaptive space region growing method to extract power lines parallel with rails. Finally use PCA (Principal Components Analysis) combine with information entropy theory method to judge a section of the power line whether is junction or not and which type of junction it belongs to. The least squares fitting algorithm is introduced to model the power line. An evaluation of the proposed method over a complicated railway point clouds acquired by a RIEGL VMX450 MLS system shows that the proposed method is promising.


2021 ◽  
Vol 7 ◽  
pp. e672
Author(s):  
Jean-Romain Roussel ◽  
Alexis Achim ◽  
David Auty

Airborne laser scanning (ALS) has gained importance over recent decades for multiple uses related to the cartography of landscapes. Processing ALS data over large areas for forest resource estimation and ecological assessments requires efficient algorithms to filter out some points from the raw data and remove human-made structures that would otherwise be mistaken for natural objects. In this paper, we describe an algorithm developed for the segmentation and cleaning of electrical network facilities in low density (2.5 to 13 points/m2) ALS point clouds. The algorithm was designed to identify transmission towers, conductor wires and earth wires from high-voltage power lines in natural landscapes. The method is based on two priors i.e. (1) the availability of a map of the high-voltage power lines across the area of interest and (2) knowledge of the type of transmission towers that hold the conductors along a given power line. It was tested on a network totalling 200 km of wires supported by 415 transmission towers with diverse topographies and topologies with an accuracy of 98.6%. This work will help further the automated detection capacity of power line structures, which had previously been limited to high density point clouds in small, urbanised areas. The method is open-source and available online.


Author(s):  
Shanxin Zhang ◽  
Cheng Wang ◽  
Zhuang Yang ◽  
Yiping Chen ◽  
Jonathan Li

Research on power line extraction technology using mobile laser point clouds has important practical significance on railway power lines patrol work. In this paper, we presents a new method for automatic extracting railway power line from MLS (Mobile Laser Scanning) data. Firstly, according to the spatial structure characteristics of power-line and trajectory, the significant data is segmented piecewise. Then, use the self-adaptive space region growing method to extract power lines parallel with rails. Finally use PCA (Principal Components Analysis) combine with information entropy theory method to judge a section of the power line whether is junction or not and which type of junction it belongs to. The least squares fitting algorithm is introduced to model the power line. An evaluation of the proposed method over a complicated railway point clouds acquired by a RIEGL VMX450 MLS system shows that the proposed method is promising.


2021 ◽  
Vol 13 (11) ◽  
pp. 2135
Author(s):  
Jesús Balado ◽  
Pedro Arias ◽  
Henrique Lorenzo ◽  
Adrián Meijide-Rodríguez

Mobile Laser Scanning (MLS) systems have proven their usefulness in the rapid and accurate acquisition of the urban environment. From the generated point clouds, street furniture can be extracted and classified without manual intervention. However, this process of acquisition and classification is not error-free, caused mainly by disturbances. This paper analyses the effect of three disturbances (point density variation, ambient noise, and occlusions) on the classification of urban objects in point clouds. From point clouds acquired in real case studies, synthetic disturbances are generated and added. The point density reduction is generated by downsampling in a voxel-wise distribution. The ambient noise is generated as random points within the bounding box of the object, and the occlusion is generated by eliminating points contained in a sphere. Samples with disturbances are classified by a pre-trained Convolutional Neural Network (CNN). The results showed different behaviours for each disturbance: density reduction affected objects depending on the object shape and dimensions, ambient noise depending on the volume of the object, while occlusions depended on their size and location. Finally, the CNN was re-trained with a percentage of synthetic samples with disturbances. An improvement in the performance of 10–40% was reported except for occlusions with a radius larger than 1 m.


2021 ◽  
Vol 13 (11) ◽  
pp. 2195
Author(s):  
Shiming Li ◽  
Xuming Ge ◽  
Shengfu Li ◽  
Bo Xu ◽  
Zhendong Wang

Today, mobile laser scanning and oblique photogrammetry are two standard urban remote sensing acquisition methods, and the cross-source point-cloud data obtained using these methods have significant differences and complementarity. Accurate co-registration can make up for the limitations of a single data source, but many existing registration methods face critical challenges. Therefore, in this paper, we propose a systematic incremental registration method that can successfully register MLS and photogrammetric point clouds in the presence of a large number of missing data, large variations in point density, and scale differences. The robustness of this method is due to its elimination of noise in the extracted linear features and its 2D incremental registration strategy. There are three main contributions of our work: (1) the development of an end-to-end automatic cross-source point-cloud registration method; (2) a way to effectively extract the linear feature and restore the scale; and (3) an incremental registration strategy that simplifies the complex registration process. The experimental results show that this method can successfully achieve cross-source data registration, while other methods have difficulty obtaining satisfactory registration results efficiently. Moreover, this method can be extended to more point-cloud sources.


2021 ◽  
Vol 13 (3) ◽  
pp. 507
Author(s):  
Tasiyiwa Priscilla Muumbe ◽  
Jussi Baade ◽  
Jenia Singh ◽  
Christiane Schmullius ◽  
Christian Thau

Savannas are heterogeneous ecosystems, composed of varied spatial combinations and proportions of woody and herbaceous vegetation. Most field-based inventory and remote sensing methods fail to account for the lower stratum vegetation (i.e., shrubs and grasses), and are thus underrepresenting the carbon storage potential of savanna ecosystems. For detailed analyses at the local scale, Terrestrial Laser Scanning (TLS) has proven to be a promising remote sensing technology over the past decade. Accordingly, several review articles already exist on the use of TLS for characterizing 3D vegetation structure. However, a gap exists on the spatial concentrations of TLS studies according to biome for accurate vegetation structure estimation. A comprehensive review was conducted through a meta-analysis of 113 relevant research articles using 18 attributes. The review covered a range of aspects, including the global distribution of TLS studies, parameters retrieved from TLS point clouds and retrieval methods. The review also examined the relationship between the TLS retrieval method and the overall accuracy in parameter extraction. To date, TLS has mainly been used to characterize vegetation in temperate, boreal/taiga and tropical forests, with only little emphasis on savannas. TLS studies in the savanna focused on the extraction of very few vegetation parameters (e.g., DBH and height) and did not consider the shrub contribution to the overall Above Ground Biomass (AGB). Future work should therefore focus on developing new and adjusting existing algorithms for vegetation parameter extraction in the savanna biome, improving predictive AGB models through 3D reconstructions of savanna trees and shrubs as well as quantifying AGB change through the application of multi-temporal TLS. The integration of data from various sources and platforms e.g., TLS with airborne LiDAR is recommended for improved vegetation parameter extraction (including AGB) at larger spatial scales. The review highlights the huge potential of TLS for accurate savanna vegetation extraction by discussing TLS opportunities, challenges and potential future research in the savanna biome.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 835
Author(s):  
Ville Luoma ◽  
Tuomas Yrttimaa ◽  
Ville Kankare ◽  
Ninni Saarinen ◽  
Jiri Pyörälä ◽  
...  

Tree growth is a multidimensional process that is affected by several factors. There is a continuous demand for improved information on tree growth and the ecological traits controlling it. This study aims at providing new approaches to improve ecological understanding of tree growth by the means of terrestrial laser scanning (TLS). Changes in tree stem form and stem volume allocation were investigated during a five-year monitoring period. In total, a selection of attributes from 736 trees from 37 sample plots representing different forest structures were extracted from taper curves derived from two-date TLS point clouds. The results of this study showed the capability of point cloud-based methods in detecting changes in the stem form and volume allocation. In addition, the results showed a significant difference between different forest structures in how relative stem volume and logwood volume increased during the monitoring period. Along with contributing to providing more accurate information for monitoring purposes in general, the findings of this study showed the ability and many possibilities of point cloud-based method to characterize changes in living organisms in particular, which further promote the feasibility of using point clouds as an observation method also in ecological studies.


2021 ◽  
Vol 13 (8) ◽  
pp. 1584
Author(s):  
Pedro Martín-Lerones ◽  
David Olmedo ◽  
Ana López-Vidal ◽  
Jaime Gómez-García-Bermejo ◽  
Eduardo Zalama

As the basis for analysis and management of heritage assets, 3D laser scanning and photogrammetric 3D reconstruction have been probed as adequate techniques for point cloud data acquisition. The European Directive 2014/24/EU imposes BIM Level 2 for government centrally procured projects as a collaborative process of producing federated discipline-specific models. Although BIM software resources are intensified and increasingly growing, distinct specifications for heritage (H-BIM) are essential to driving particular processes and tools to efficiency shifting from point clouds to meaningful information ready to be exchanged using non-proprietary formats, such as Industry Foundation Classes (IFC). This paper details a procedure for processing enriched 3D point clouds into the REVIT software package due to its worldwide popularity and how closely it integrates with the BIM concept. The procedure will be additionally supported by a tailored plug-in to make high-quality 3D digital survey datasets usable together with 2D imaging, enhancing the capability to depict contextualized important graphical data to properly planning conservation actions. As a practical example, a 2D/3D enhanced combination is worked to accurately include into a BIM project, the length, orientation, and width of a big crack on the walls of the Castle of Torrelobatón (Spain) as a representative heritage building.


Sign in / Sign up

Export Citation Format

Share Document