The effect of a non-Gaussian point target response function on radar altimeter returns from the sea surface

1987 ◽  
Vol 8 (3) ◽  
pp. 309-313 ◽  
Author(s):  
P. G. CHALLENOR ◽  
B. GRECO ◽  
M. A. SROKOSZ
2008 ◽  
Vol 38 (3) ◽  
pp. 670-685 ◽  
Author(s):  
E. J. Walsh ◽  
C. W. Wright ◽  
M. L. Banner ◽  
D. C. Vandemark ◽  
B. Chapron ◽  
...  

Abstract During the Southern Ocean Waves Experiment (SOWEX), registered ocean wave topography and backscattered power data at Ka band (36 GHz) were collected with the NASA Scanning Radar Altimeter (SRA) off the coast of Tasmania under a wide range of wind and sea conditions, from quiescent to gale-force winds with 9-m significant wave height. Collection altitude varied from 35 m to over 1 km, allowing determination of the sea surface mean square slope (mss), the directional wave spectrum, and the detailed variation of backscattered power with incidence angle, which deviated from a simple Gaussian scattering model. The non-Gaussian characteristics of the backscatter increased systematically with the mss, suggesting that a global model to characterize Ka-band radar backscatter from the sea surface within 25° of nadir might be possible.


Author(s):  
N. A. Z. Yahaya ◽  
T. A. Musa ◽  
K. M. Omar ◽  
A. H. M. Din ◽  
A. H. Omar ◽  
...  

The advancement of satellite altimeter technology has generated many evolutions to oceanographic and geophysical studies. A multi-mission satellite altimeter consists with TOPEX, Jason-1 and Jason-2, ERS-2, Envisat-1, CryoSat-2 and Saral are extracted in this study and has been processed using Radar Altimeter Database System (RADS) for the period of January 2005 to December 2015 to produce the sea surface height (hereinafter referred to SSH). The monthly climatology data from SSH is generated and averaged to understand the variation of SSH during monsoon season. Then, SSH data are required to determine the localised and new mean sea surface (MSS). The differences between Localised MSS and DTU13 MSS Global Model is plotted with root mean square error value is 2.217 metres. The localised MSS is important towards several applications for instance, as a reference for sea level variation, bathymetry prediction and derivation of mean dynamic topography.


2021 ◽  
Author(s):  
Estelle Obligis ◽  
Ewa Kwiatkowska ◽  
Anne O'Carroll ◽  
Remko Scharroo

<p>The first Copernicus Sentinel-3 satellite, Sentinel-3A, was launched in early 2016, and its twin Sentinel-3B in April 2018. The Sentinel-3 constellation is now fully operational with Sentinel-3B satellite flying in the same orbit plan with a phase difference of 140°. This constellation provides a unique consistent, long-term collection of marine and land data for operational analysis, forecasting and environmental and climate monitoring. The marine centre is part of the Sentinel-3 Payload Data Ground Segment, located at EUMETSAT. This centre together with the existing EUMETSAT facilities provides a routine centralised service for operational meteorology, oceanography, and other Sentinel-3 marine users as part of the European Commission's Copernicus programme. The EUMETSAT marine centre delivers operational Sea Surface Temperature, Ocean Colour and Sea Surface Topography data products based on the measurements from the Sea and Land Surface Temperature Radiometer (SLSTR), Ocean and Land Colour Instrument (OLCI) and Synthetic Aperture Radar Altimeter (SRAL), all aboard Sentinel-3 satellites. All products have been developed together with ESA and industry partners and EUMETSAT is responsible for the production, distribution, performance and future evolution of Level-2 marine products. We will give an overview of the scientific characteristics and algorithms of all marine Level-2 products, as well as instrument calibration and product validation results based on on-going Sentinel-3 Cal/Val activities. Information will be also provided about the current status of the product dissemination and the future evolutions that are envisaged. Also, we will provide information how to access Sentinel-3 data from EUMETSAT and where to look for further information.</p>


2014 ◽  
Vol 71 (4) ◽  
Author(s):  
Muhammad Faiz Pa'suya ◽  
Kamaludin Mohd Omar ◽  
Benny N. Peter ◽  
Ami Hassan Md Din ◽  
Mohd Fadzil Mohd Akhir

The sea surface circulation pattern over the coast of Peninsula Malaysia's East Coast during Northeast Monsoon (NE) and Southwest Monsoon (SW) are derived using the seasonally averaged sea level anomaly (SLA) data from altimetric data and 1992-2002 Mean Dynamic Ocean Topography. This altimetric data has been derived from multi-mission satellite altimeter TOPEX, ERS-1, ERS-2, JASON-1, and ENVISAT for the period of nineteen years (1993 to 2011) using the Radar Altimeter Database System (RADS). The estimated sea level anomaly (SLA) have shown similarity in the pattern of sea level variations observed by four tide gauges. Overall, the sea surface circulations during the NE and SW monsoons shows opposite patterns, northward and southward respectively. During the SW monsoon, an anti-cyclonic circulation has been detected around the Terengganu coastal area centred at (about 5.5° N 103.5° E) and nearly consistent with previous study using numerical modelling. The estimated geostrophic current field from the altimeter is consistent with the trajectories of Argos-tracked Drifting Buoys provided by the Marine Environmental Data Services (MEDS) in Canada.


Sign in / Sign up

Export Citation Format

Share Document