QUASI STATIC SOLUTION ALGORITHMS FOR KINEMATICALLY/MATERIALLY NONLINEAR THERMOMECHANICAL PROBLEMS

1984 ◽  
Vol 7 (3-4) ◽  
pp. 227-257 ◽  
Author(s):  
Joseph Padovan ◽  
Shantaram S. Pai
Author(s):  
Ismail Chabini

A solution is provided for what appears to be a 30-year-old problem dealing with the discovery of the most efficient algorithms possible to compute all-to-one shortest paths in discrete dynamic networks. This problem lies at the heart of efficient solution approaches to dynamic network models that arise in dynamic transportation systems, such as intelligent transportation systems (ITS) applications. The all-to-one dynamic shortest paths problem and the one-to-all fastest paths problems are studied. Early results are revisited and new properties are established. The complexity of these problems is established, and solution algorithms optimal for run time are developed. A new and simple solution algorithm is proposed for all-to-one, all departure time intervals, shortest paths problems. It is proved, theoretically, that the new solution algorithm has an optimal run time complexity that equals the complexity of the problem. Computer implementations and experimental evaluations of various solution algorithms support the theoretical findings and demonstrate the efficiency of the proposed solution algorithm. The findings should be of major benefit to research and development activities in the field of dynamic management, in particular real-time management, and to control of large-scale ITSs.


2015 ◽  
Vol 24 (05) ◽  
pp. 1550034 ◽  
Author(s):  
Piyali Bhar ◽  
Ayan Banerjee

In this paper, we construct thin-shell wormholes in (2 + 1)-dimensions from noncommutative BTZ black hole by applying the cut-and-paste procedure implemented by Visser. We calculate the surface stresses localized at the wormhole throat by using the Darmois–Israel formalism and we find that the wormholes are supported by matter violating the energy conditions. In order to explore the dynamical analysis of the wormhole throat, we consider that the matter at the shell is supported by dark energy equation of state (EoS) p = ωρ with ω < 0. The stability analysis is carried out of these wormholes to linearized spherically symmetric perturbations around static solutions. Preserving the symmetry we also consider the linearized radial perturbation around static solution to investigate the stability of wormholes which was explored by the parameter β (speed of sound).


2021 ◽  
Author(s):  
Isamu Akiba ◽  
Kazuo Sakurai

AbstractBlock copolymers are well recognized as excellent nanotools for delivering hydrophobic drugs. The formulation of such delivery nanoparticles requires robust characterization and clarification of the critical quality attributes correlating with the safety and efficacy of the drug before applying to regulatory authorities for approval. Static solution scattering from block copolymers is one such technique. This paper first outlines the theoretical background and current models for analyzing this scattering and then presents an overview of our recent studies on block copolymers.


2021 ◽  
Vol 4 (3) ◽  
pp. 11-18
Author(s):  
Khakimjon Zaynidinov ◽  
◽  
Odilbek Askaraliyev

The article discusses the selection of parameters for the algorithm for determining binary data arrays included in the control system, developed by the authors using independent substitution methods. Based on the analysis of the algorithms of non-cryptographic hash functions, the hash function based on the linear matching method was selected as the basis for independent substitution methods. Simplified schemes of algorithms developed for creating and comparing identifiers using a set of basic hash functions are given. An array of binary data was selected and based on the appropriate values for the size of the divisible blocks and the number of basic hashfunctions used for independent substitutions. The selection of binary data arrays in information systems integrated into the management system was done for the purpose of intellectual processing of incoming data. The properties of the array of data entering integrated systems are studied. The authors conducted experimental tests in the selected direction and presented the results of similarity assessment measurements for various parameters of the identification algorithm. In addition, the article conductedexperiments on the object of study using the selected mathematical model, based on the analytical conclusions. Initiator elements are studied and analyzed using a set of hash functions. An algorithm for comparison of selected identifiers has been developed. A generation algorithm has been developed to demonstrate and test the proposed solution. Algorithms based on analysis and experiments, and methods for selecting binary data arrays using the ash function have been experimentally tested. Based on the results, the indicators are shown. Based on the results obtained, the analytical conclusions and problem solutions of the research work were recognized


Author(s):  
Alexander V. Pesterev ◽  
Lawrence A. Bergman

Abstract The problem of calculating the dynamic response of a one-dimensional distributed parameter system excited by an oscillator traversing the system with an arbitrarily varying speed is investigated. An improved series representation for the solution is derived that takes into account the jump in the shear force at the point of the attachment of the oscillator, which makes it possible to efficiently calculate the distributed shear force and, where applicable, bending moment. The improvement is achieved through the introduction of the “quasi-static” solution, an approximation to the desired one, which makes it possible to apply to the moving oscillator problem the “mode-acceleration” technique conventionally used for acceleration of series in problems related to the steady-state vibration of distributed systems. Numerical results illustrating the efficiency of the method are presented.


2019 ◽  
Vol 28 (12) ◽  
pp. 1950158 ◽  
Author(s):  
Gamal Nashed

We derive an exact static solution in diverse dimension, without any constraints, to the field equations of [Formula: see text] gravitational theory using a planar spacetime with two unknown functions, i.e. [Formula: see text] and [Formula: see text]. The black hole solution is characterized by two constants, [Formula: see text] and [Formula: see text], one is related to the mass of the black hole, [Formula: see text], and the other is responsible to make the solution deviate from the teleparallel equivalent of general relativity (TEGR). We show that the analytic function [Formula: see text] depends on the constant [Formula: see text] and becomes constant function when [Formula: see text] which corresponds to the TEGR case. The interesting property of this solution is the fact that it makes the singularity of the Kretschmann invariant much softer than the TEGR case. We calculate the energy of this black hole and show that it is equivalent to ADM mass. Applying a coordinate transformation, we derive a rotating black hole with nontrivial values of the torsion scalar and [Formula: see text]. Finally, we examine the physical properties of this black hole solution using the laws of thermodynamics and show that it has thermodynamical stability.


Author(s):  
Elena Ferretti

This paper presents a new numerical method for multiscale modeling of composite materials. The new numerical model, called DECM, consists in a DEM (Discrete Element Method) approach of the Cell Method (CM) and combines the main features of both the DEM and the CM. In particular, it offers the same degree of detail as the CM, on the microscale, and manages the discrete elements individually such as the DEM&mdash;allowing finite displacements and rotations&mdash;on the macroscale. Moreover, the DECM is able to activate crack propagation until complete detachment and automatically recognizes new contacts. Unlike other DEM approaches for modeling failure mechanisms in continuous media, the DECM does not require prior knowledge of the failure position. Furthermore, the DECM solves the problems in the space domain directly. Therefore, it does not require any dynamic relaxation techniques to obtain the static solution. For the sake of example, the paper shows the results offered by the DECM for axial and shear loading of a composite two-dimensional domain with periodic round inclusions. The paper also offers some insights into how the inclusions modify the stress field in composite continua.


Sign in / Sign up

Export Citation Format

Share Document