Taxonomic implications of recent molecular analyses of Spectacled (Symposiachrus trivirgatus) and Spot-winged (S. guttula) Monarchs (Passeriformes: Monarchidae)

2021 ◽  
pp. 1-7
Author(s):  
Jenna M. McCullough ◽  
Ethan F. Gyllenhaal ◽  
Xena M. Mapel ◽  
Michael J. Andersen ◽  
Leo Joseph
PLoS ONE ◽  
2013 ◽  
Vol 8 (3) ◽  
pp. e59784 ◽  
Author(s):  
Maykon Passos Cristiano ◽  
Danon Clemes Cardoso ◽  
Tânia Maria Fernandes-Salomão

2011 ◽  
Vol 80 (4) ◽  
pp. 231-249 ◽  
Author(s):  
Francesca Benzoni ◽  
Roberto Arrigoni ◽  
Fabrizio Stefani ◽  
Michel Pichon

Until coral molecular phylogenies were published, the genus Plesiastrea was traditionally part of the family Faviidae and considered by several authors to be closely related to the genus Montastraea. However, genetic data has shown that Plesiastrea versipora, the genus type species, is evolutionarily distinct within the Robust clade of the Scleractinia and does not belong to the large clade grouping most representatives of the families Faviidae, including Montastraea, Mussidae, Merulinidae, Trachyphylliidae, and Pectiniidae. Instead, P. versipora is closely related to non reef-dwelling taxa currently ascribed to the Oculinidae (Cyathelia axillaris) and Caryophylliidae (Trochocyathus efateensis). However, no discussion on the morphologic features of P. versipora compared to other taxa has been published yet. Moreover, no information is available about the phylogenetic placement of Plesiastrea devantieri, the only other species in the genus. The phylogeny of both Plesiastrea species was addressed through molecular analyses (COI and rDNA) and morphological analysis. Morphological differences between the two species included number of septa, cycles of vertical structures in front of the septa and septal micromorphology. On the basis of these data and nuclear and mitochondrial markers, P. devantieri belongs to the Faviidae-Merulinidae-Pectiniidae-Trachyphylliidae clade (Clade XVII sensu Fukami et al., 2008) and is most closely related to Goniastrea aspera and G. palauensis. The type species of the genus Goniastrea, G. retiformis, however, is not closely related to either G. aspera and G. palauensis, or to P. devantieri. Taxonomic implications of these findings and morphologic affinities between the two species and closely related taxa are discussed.


2004 ◽  
Vol 25 (2) ◽  
pp. 185-196 ◽  
Author(s):  
Ana Paula Zampieri Silva ◽  
Paulo Garcia ◽  
Vanderlei Martins ◽  
Maurício Bacci ◽  
Sanae Kasahara

Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
N Milic ◽  
S Kostidis ◽  
A Stavrou ◽  
Z Gonou-Zagou ◽  
VN Kouvelis ◽  
...  

2016 ◽  
Vol 50 ◽  
pp. 125-141
Author(s):  
A. D. Temraleeva ◽  
S. A. Dronova

Nodosilinea epilithica Perkerson et Casamatta is reported for the first time for Russia. The sample was isolated from a typical chestnut soil in the zone of dry steppes (Volgograd Region) and its identity was confirmed by morphological and molecular analyses. The specific feature of the studied strain is its ability to form nodules at normal (60–75 μmol photons ∙ m-2 ∙ sec-1) light. The number of nodules is supposed to be related to the age of a cyanobacterial culture.


2019 ◽  
Vol 27 (3) ◽  
pp. 165-195
Author(s):  
Charlotte M. Taylor

Psychotria subg. Heteropsychotria Steyerm. has been shown by morphological and molecular analyses to be polyphyletic. Most of its species, including its type, belong to Palicourea Aubl. (“Pal.”). Thirty-two species of this group are reviewed here, and 17 species in Psychotria L. are transferred to Palicourea and one to Rudgea Salisb. Two replacement names, Pal. agudeloana C. M. Taylor and Pal. tabayensis C. M. Taylor, are published. Taxonomic studies here clarify circumscriptions of similar, often-confused species for several distinctive species groups found variously in Mesoamerica and the Andes: the Palicourea aschersonianoides group, the Palicourea galeottiana group, the Palicourea sulphurea group, and the Palicourea tristis group. Three new species of Palicourea are described: Pal. aschersonianula C. M. Taylor, Pal. gonzaleziana C. M. Taylor, and Pal. wachterae C. M. Taylor. Nineteen names are newly typified, and infrageneric classifications are noted for the species of Palicourea studied.


2019 ◽  
Vol 220 (3) ◽  
pp. 467-475 ◽  
Author(s):  
Jacob M Riveron ◽  
Silvie Huijben ◽  
Williams Tchapga ◽  
Magellan Tchouakui ◽  
Murielle J Wondji ◽  
...  

Abstract Background Insecticide resistance poses a serious threat to insecticide-based interventions in Africa. There is a fear that resistance escalation could jeopardize malaria control efforts. Monitoring of cases of aggravation of resistance intensity and its impact on the efficacy of control tools is crucial to predict consequences of resistance. Methods The resistance levels of an Anopheles funestus population from Palmeira, southern Mozambique, were characterized and their impact on the efficacy of various insecticide-treated nets established. Results A dramatic loss of efficacy of all long-lasting insecticidal nets (LLINs), including piperonyl butoxide (PBO)–based nets (Olyset Plus), was observed. This An. funestus population consistently (2016, 2017, and 2018) exhibited a high degree of pyrethroid resistance. Molecular analyses revealed that this resistance escalation was associated with a massive overexpression of the duplicated cytochrome P450 genes CYP6P9a and CYP6P9b, and also the fixation of the resistance CYP6P9a_R allele in this population in 2016 (100%) in contrast to 2002 (5%). However, the low recovery of susceptibility after PBO synergist assay suggests that other resistance mechanisms could be involved. Conclusions The loss of efficacy of pyrethroid-based LLINs with and without PBO is a concern for the effectiveness of insecticide-based interventions, and action should be taken to prevent the spread of such super-resistance.


Limnology ◽  
2021 ◽  
Author(s):  
Renata Manconi ◽  
Dirk Erpenbeck ◽  
Jane Fromont ◽  
Gert Wörheide ◽  
Roberto Pronzato

AbstractA recent discovery of freshwater sponges in an unexplored hydrographic basin in north-western Australia provided the opportunity to investigate the genus Corvospongilla Annandale (Spongillida: Spongillidae) using integrative systematics. Emendation of the genus diagnosis is provided. A comparative analysis of a Corvospongilla global dataset of morphological traits together with biogeographic patterns disclosed a new Australasian Corvospongilla species and along with molecular analyses provided the basis for a phylogenetic and phylogeographic tree for some Asian, Afrotropical and Australasian lineages.


Sign in / Sign up

Export Citation Format

Share Document