Modeling the micro-scale static friction coefficient of the MEMS silicon surfaces affected by Ag and Au deposition using the thermal evaporation method

2018 ◽  
Vol 33 (4) ◽  
pp. 355-370
Author(s):  
Mojtaba Kolahdoozan ◽  
Hamed Saedi ◽  
Nima Sina ◽  
Soheil Oveissi
2009 ◽  
Vol 24 (5) ◽  
pp. 998-1002
Author(s):  
Bo LIU ◽  
Fa-Zhan WANG ◽  
Gu-Zhong ZHANG ◽  
Chao ZHAO ◽  
Si-Cong YUAN

2015 ◽  
Vol 44 (5) ◽  
pp. 2409-2415 ◽  
Author(s):  
Siwen Zhang ◽  
Bosi Yin ◽  
He Jiang ◽  
Fengyu Qu ◽  
Ahmad Umar ◽  
...  

Heterostructured ZnO/ZnS nanoforests are prepared through a simple two-step thermal evaporation method at 650 °C and 1300 °C in a tube furnace under the flow of argon gas, respectively.


2011 ◽  
Vol 406 (18) ◽  
pp. 3479-3483 ◽  
Author(s):  
C.Y. Zang ◽  
C.H. Zang ◽  
B. Wang ◽  
Z.X. Jia ◽  
S.R. Yue ◽  
...  

2011 ◽  
Vol 133 (3) ◽  
Author(s):  
Rebecca D. Ibrahim Dickey ◽  
Robert L. Jackson ◽  
George T. Flowers

A new experimental apparatus is used to measure the static friction between tin surfaces under various loads. After the data is collected it is then compared to an existing theoretical model. The experiment uses the classical physics technique of increasing the incline of a plane and block until the block slides. The angle at the initiation of sliding is used to find the static friction coefficient. The experiment utilizes an automated apparatus to minimize human error. The finite element based statistical rough surface contact model for static friction under full stick by Li, Etsion, and Talke (2010, “Contact Area and Static Friction of Rough Surfaces with High Plasticity Index,” ASME Journal of Tribology, 132(3), p. 031401) is used to make predictions of the friction coefficient using surface profile data from the experiment. Comparison of the computational and experimental methods shows similar qualitative trends, and even some quantitative agreement. After adjusting the results for the possible effect of the native tin oxide film, the theoretical and experimental results can be brought into reasonable qualitative and quantitative agreement.


2019 ◽  
Vol 10 (1) ◽  
pp. 253-273 ◽  
Author(s):  
Ilya Svetlizky ◽  
Elsa Bayart ◽  
Jay Fineberg

Contacting bodies subjected to sufficiently large applied shear will undergo frictional sliding. The onset of this motion is mediated by dynamically propagating fronts, akin to earthquakes, that rupture the discrete contacts that form the interface separating the bodies. Macroscopic motion commences only after these ruptures have traversed the entire interface. Comparison of measured rupture dynamics with the detailed predictions of fracture mechanics reveals that the propagation dynamics, dissipative properties, radiation, and arrest of these “laboratory earthquakes” are in excellent quantitative agreement with the predictions of the theory of brittle fracture. Thus, interface fracture replaces the idea of a characteristic static friction coefficient as a description of the onset of friction. This fracture-based description of friction additionally provides a fundamental description of earthquake dynamics and arrest.


Sign in / Sign up

Export Citation Format

Share Document