Nitrate accumulation reduction using chloride in the nutrient solution on lettuce growing by NFT in semiarid climate conditions

1998 ◽  
Vol 21 (8) ◽  
pp. 1705-1714 ◽  
Author(s):  
Miguel Urrestarazu ◽  
Adela Postigo ◽  
Maricarmen Salas ◽  
Agustín Sánchez ◽  
Gilda Carrasco
Agronomy ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 922 ◽  
Author(s):  
Pavlos Tsouvaltzis ◽  
Dimitrios S. Kasampalis ◽  
Danai-Christina Aktsoglou ◽  
Nikolaos Barbayiannis ◽  
Anastasios S. Siomos

Excessive nitrogen fertilization results in nitrate accumulation in leafy vegetables. Reducing the dose of mineral nitrogen or using alternate fertilizers lowers the nitrate accumulation; however, a critical minimum level of mineral nitrogen is necessary to maintain yield and nutritional quality. The aim of this study was to evaluate the effect of two levels of mineral nitrogen (100% and 50%) and three levels of an amino acid solution (0, 0.3, and 0.9%) in the nutrient solution of two baby lettuce cultivars (green and red) grown in a floating system. Nitrogen reduction did not affect yield (12.9–13.4 and 11.0–11.3 g/plant, respectively) but reduced nitrate accumulation (by 43 and 19%, respectively) in both green and red lettuce, while enhancing phenolic content (by 28%) and antioxidant capacity (by 69%) in green lettuce and soluble solid (by 7%) and total chlorophyll content (by 9%) in red lettuce. Although nitrate accumulation was prevented (< 355 mg/kg FW) and most nutritional components increased in both lettuce types by amino acids supplementation, plant growth was negatively affected, especially in red lettuce, in both concentrations of amino acids (reduction by 9 and 35% in 0.3 and 0.9%, respectively). In both lettuce types, proline content increased by 0.9% amino acids supplementation (by 45%), implying a probable induction of a stress condition. Mineral nutrients were slightly affected by nitrogen reduction, which was probably perceived as an abiotic stress.


1994 ◽  
pp. 583-589 ◽  
Author(s):  
G. Martignon ◽  
D. Casarotti ◽  
A. Venezia ◽  
. ◽  
F. Malorgio

HortScience ◽  
2011 ◽  
Vol 46 (12) ◽  
pp. 1619-1625 ◽  
Author(s):  
Luisa Dalla Costa ◽  
Nicola Tomasi ◽  
Stefano Gottardi ◽  
Francesco Iacuzzo ◽  
Giovanni Cortella ◽  
...  

Soil temperature has a crucial impact on physiological processes and growth of plants with important consequences for plant productivity and food safety including nitrate accumulation in leaf blades of leaf vegetables. Consumer demand for high-quality, fresh-cut vegetables has increased rapidly in the last decades, and temperature modulation can help control nitrate concentration in fresh vegetables, an important trait of product safety. Corn salad plants [Valerianella locusta (L.) Laterr., cultivar Gala] were grown at three root temperatures (15, 20, and 25 °C) in a floating system. This experimental setup allowed to directly evaluate the effect of root temperature on yield and plant quality excluding the effect on soil processes and properties. Nutrient solution was renewed weekly and kept aerated while air temperature was maintained constant at 20 °C for all treatments during the entire time of experiments. At harvest, plants were collected, the shelf life evaluated, and the nutrient uptake [NO3−, iron (Fe) from 59Fe-o,oEDDHA, and 35SO42−] and mineral content were determined. Results showed that growing conditions at 20 °C of the nutrient solution led to the best plant performance in terms of yield, nitrate content at leaf level, root biomass, leaf area, and greenness with positive effects on postharvest quality, i.e., less rapid leaf loss of greenness and leaf fresh weight (FW) loss during conservation at 4 °C. At this temperature condition of the nutrient solution, it has also been observed an enhanced functionality of mechanisms involved in the acquisition of nutrients like NO3−, Fe, and SO42−, which are known to play an important role in nitrate level in leaf tissues of crops. Plants grown at 15 °C showed minor growth, whereas the nutrient solution at 25 °C caused stress for the plants affecting negatively the quality and yield. Overall, the results obtained showed that root temperature plays a fundamental role in several plant processes that affect yield and its quality; for hydroponic system cultivations, a level of growing-medium temperature close to that of the surrounding air seems suitable.


2017 ◽  
Vol 9 (8) ◽  
pp. 1482 ◽  
Author(s):  
Yufang Shen ◽  
Lixia Zhu ◽  
Hongyan Cheng ◽  
Shanchao Yue ◽  
Shiqing Li

2021 ◽  
Vol 49 (4) ◽  
pp. 12540
Author(s):  
Selçuk SÖYLEMEZ

Ammonium (NH4+) to nitrate (NO3-) ratio and growth media significantly alter plant development and NO3- accumulation in lettuce. Nitrate accumulation is regarded harmful for environment and human health. The quality of lettuce is assessed by NO3-concentration, size, and weight. This study determined the impact of five different growth media (cocopeat, peat, bark, perlite and rockwool) and four different NH4+:NO3- ratios (0:100, 20:80, 40:60 and 60:40) on NO3- accumulation in lettuce, yield, and several growth attributes. The experimentation was conducted according to open feeding system of soilless agriculture. The ‘Cosmos’ variety of lettuce was used as experimental material in the study. Growth mediums and NH4+:NO3- ratios significantly altered NO3- accumulation, head, leaf, stem and root traits. The results revealed that instead of growing lettuce with NO3- only in peat and rockwool, addition of NH4+ (20:80 of NH4+:NO3-) into nutrient solution increased head weight. While head weight increased in perlite medium with the addition of NH4+, it decreased in cocopeat and bark media. It is concluded that growth media and NH4+:NO3- ratios pose significant impacts on NO3- accumulation in leaf and that the increase in NH4+ ratio decreased NO3- accumulation in all growing media. Therefore, it is recommended that NH4+ should be added in the nutrient solution to decrease NO3- accumulation, which will ultimately improve yield and quality of lettuce.


Author(s):  
Johannes Buckel ◽  
Eike Reinosch ◽  
Anne Voigtländer ◽  
Michael Dietze ◽  
Matthias Bücker ◽  
...  

HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 453D-453
Author(s):  
Martin P.N. Gent

Serial plantings of hydroponic lettuce were grown throughout the year in the northeast United States to determine how sunlight intensity and solution nitrate affect nitrate in leaf tissue. Two nutrient solutions were used. All essential elements were supplied at the same concentration, except nitric acid was added to the high-N treatment to increase nitrate to 5.7 mm (352 ppm), compared to 4.0 mm (248 ppm) in the low-N treatment. A feedback control system maintained a constant conductivity and volume in the recirculating nutrient solution. The actual nitrate concentration in solution was higher in winter than in summer. In winter, it rose to 800 ppm in the high-N solution, while it remained below 200 ppm in the low-N solution. In summer, nitrate was 200 to 400 ppm in the high-N solution, compared to 40 to 120 ppm in the low-N solution. Concentration of other mineral elements remained at levels similar to the original formulation. Nitrate concentration in leaf tissue when the lettuce plants reached a marketable size was sensitive to sunlight and nitrate supply. In spring and summer, tissue nitrate was as low as 1100 ppm. It increased to about 4000 ppm in lettuce grown in mid-winter in a shaded greenhouse and fed high-N solution, while low-N plants had less than 3000 ppm nitrate. Tissue nitrate was related to solution nitrate. Tissue nitrate increased in proportion to solution nitrate, up to about 400 ppm nitrate in solution, then leveled off at a concentration of about 4000 ppm in the leaves, a relation that was the same under all sunlight intensities. The accumulation of nitrate in the nutrient solution was one cause of the high concentration of nitrate in lettuce leaves.


Sign in / Sign up

Export Citation Format

Share Document