scholarly journals The Effect of Growth Medium Temperature on Corn Salad [Valerianella locusta (L.) Laterr] Baby Leaf Yield and Quality

HortScience ◽  
2011 ◽  
Vol 46 (12) ◽  
pp. 1619-1625 ◽  
Author(s):  
Luisa Dalla Costa ◽  
Nicola Tomasi ◽  
Stefano Gottardi ◽  
Francesco Iacuzzo ◽  
Giovanni Cortella ◽  
...  

Soil temperature has a crucial impact on physiological processes and growth of plants with important consequences for plant productivity and food safety including nitrate accumulation in leaf blades of leaf vegetables. Consumer demand for high-quality, fresh-cut vegetables has increased rapidly in the last decades, and temperature modulation can help control nitrate concentration in fresh vegetables, an important trait of product safety. Corn salad plants [Valerianella locusta (L.) Laterr., cultivar Gala] were grown at three root temperatures (15, 20, and 25 °C) in a floating system. This experimental setup allowed to directly evaluate the effect of root temperature on yield and plant quality excluding the effect on soil processes and properties. Nutrient solution was renewed weekly and kept aerated while air temperature was maintained constant at 20 °C for all treatments during the entire time of experiments. At harvest, plants were collected, the shelf life evaluated, and the nutrient uptake [NO3−, iron (Fe) from 59Fe-o,oEDDHA, and 35SO42−] and mineral content were determined. Results showed that growing conditions at 20 °C of the nutrient solution led to the best plant performance in terms of yield, nitrate content at leaf level, root biomass, leaf area, and greenness with positive effects on postharvest quality, i.e., less rapid leaf loss of greenness and leaf fresh weight (FW) loss during conservation at 4 °C. At this temperature condition of the nutrient solution, it has also been observed an enhanced functionality of mechanisms involved in the acquisition of nutrients like NO3−, Fe, and SO42−, which are known to play an important role in nitrate level in leaf tissues of crops. Plants grown at 15 °C showed minor growth, whereas the nutrient solution at 25 °C caused stress for the plants affecting negatively the quality and yield. Overall, the results obtained showed that root temperature plays a fundamental role in several plant processes that affect yield and its quality; for hydroponic system cultivations, a level of growing-medium temperature close to that of the surrounding air seems suitable.

Horticulturae ◽  
2019 ◽  
Vol 5 (3) ◽  
pp. 63 ◽  
Author(s):  
Alessandro Miceli ◽  
Filippo Vetrano ◽  
Leo Sabatino ◽  
Fabio D’Anna ◽  
Alessandra Moncada

Plant growth regulators are used in high-value vegetable crops during cultivation and after harvest to increase yield, enhance crop management, and improve or retain the produce quality. The aim of this work was to evaluate the quality characteristics during cold storage of minimally processed leaf lettuce and rocket, obtained from plants grown in a hydroponic floating system with mineral nutrient solutions (MNS) containing different levels of gibberellic acid (GA3). Plants were grown in greenhouse conditions on nutrient solutions containing 0, 10−8, and 10−6 M GA3. At harvest, lettuce and rocket were immediately processed as fresh-cut vegetables and stored for 21 d at 4 °C. After processing, weight loss, total soluble solids, titratable acidity, ascorbic acid and nitrate content, leaf color characteristics, and overall quality were evaluated. Adding 10−6 M GA3 to the MNS of a floating system significantly increased the yield of leaf lettuce and rocket plants and of minimally-processed leaves. In addition, preharvest GA3 treatments had positive effects on delaying senescence and enhancing shelf-life of minimally processed lettuce and rocket. The slowed senescence of GA3-treated samples maintained an overall quality over the threshold of marketability in both lettuce and rocket for up to 21 d of cold storage.


Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 315
Author(s):  
Noémi Kappel ◽  
Ildikó Fruzsina Boros ◽  
Francia Seconde Ravelombola ◽  
László Sipos

The goal of this research was to investigate the effect of electrical conductivity (EC) levels of the nutrient solution on the fresh weight, chlorophyll, and nitrate content of hydroponic-system-grown lettuce. The selected cultivars are the most representative commercial varieties grown for European markets. Seven cultivars (‘Sintia,’ ‘Limeira,’ ‘Corentine,’ ‘Cencibel,’ ‘Kiber,’ ‘Attiraï,’ and ‘Rouxaï’) of three Lactuca sativa L. types’ (butterhead, loose leaf, and oak leaf) were grown in a phytotron in rockwool, meanwhile the EC level of the nutrient solutions were different: normal (<1.3 dS/m) and high (10 dS/m). The plants in the saline condition had a lower yield but elevated chlorophyll content and nitrate level, although the ‘Limeira’ and ‘Cencibel’ cultivars had reduced nitrate levels. The results and the special characteristic of the lollo-type cultivars showed that the nitrate level could be very different due to salinity (‘Limeira’ had the lowest (684 µg/g fresh weight (FW)) and ‘Cencibel’ had the highest (4396 µg/g FW)). There was a moderately strong negative correlation (−0.542) in the reverse ratio among the chlorophyll and nitrate contents in plants treated with a normal EC value, while this relationship was not shown in the saline condition. Under the saline condition, cultivars acted differently, and all examined cultivars stayed under the permitted total nitrate level (5000 µg/g FW).


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1469
Author(s):  
Michele Ciriello ◽  
Luigi Formisano ◽  
Antonio Pannico ◽  
Christophe El-Nakhel ◽  
Giancarlo Fascella ◽  
...  

Hydroponics growing systems often contain excessive nutrients (especially nitrates), which could lead to a quality loss in ready-to-eat leafy vegetables and posing a health risk to consumers, if managed inadequately. A floating raft system was adopted to assay the production and quality performance of lettuce (Lactuca sativa L. cv ‘Maravilla De Verano Canasta’) deprived of the nutrient solution by replacement with only water, three and six days before harvest. Yield and quality parameters, mineral composition, pigments, organic acids, amino acids profile, soluble proteins, and carbohydrate content were determined. Nutrient solution deprivation six days before harvest resulted in a significant reduction in leaf nitrate (−53.3%) concomitant with 13.8% of yield loss, while plants deprived of nutrient solution three days before harvest increased total phenols content (32.5%) and total ascorbic acid (102.1%), antioxidant activity (82.7%), anthocyanins (7.9%), sucrose (38.9%), starch (19.5%), and γ-aminobutyric acid (GABA; 28.2%), with a yield reduction of 4.7%, compared to the control. Our results suggest that nutrient solution deprivation three days before harvest is a successful strategy to reduce nitrate content and increase the nutritional quality of lettuce grown in floating raft systems with negligible impact on yield. These promising results warrant further investigation of the potential effect of nutrient solution deprivation on the quality attributes of other leafy vegetables cultivated in floating raft systems and in a “cascade” growing system.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rayhan Uddin ◽  
Mostak Uddin Thakur ◽  
Mohammad Zia Uddin ◽  
G. M. Rabiul Islam

AbstractNitrate is a chemical compound naturally present in fruits and vegetables. This study aims at assessing the nitrate levels and health risks arising from high consumption of fruits and vegetables in Bangladesh. Sixteen species of fruits and vegetables were examined for nitrates using High-Performance Liquid Chromatography with Photo Diode Array (PDA) detector. Ward’s hierarchical cluster analysis was carried out to identify the cluster of tested fruits and vegetables for the nitrate contents. A point estimate of the daily intake was applied to find the health risks that arise due to elevated levels of nitrate in fruits and vegetables. The results show that root and tuber vegetables accumulate significantly higher levels of nitrate in comparison to fruits and fruit vegetables (P < 0.05). In cluster analysis, the nitrate accumulation of fruits and vegetables show four clear clusters contributing to 29.54%, 7.17%, 4.42%, and 58.57% of the total nitrate content in the entire sample. The risk assessment of the Estimated Daily Intake (EDI) and Health Risk Index (HRI) of almost all the tested samples was in the acceptable range, except for radish, thereby indicating the acceptance of risk due to nitrate intake in Bangladesh. As nitrate may have had risk factor for health, during cultivation and storing the product should be properly monitored.


2020 ◽  
Vol 10 (23) ◽  
pp. 8431
Author(s):  
Somaris E. Quintana ◽  
Olimpia Llalla ◽  
Luis A. García-Zapateiro ◽  
Mónica R. García-Risco ◽  
Tiziana Fornari

Several plant extracts are being investigated to produce edible coatings, mainly due to their antioxidant and antimicrobial activities. In this study, licorice root extracts were produced by ultrasound-assisted extraction and were combined with chitosan to elaborate edible coatings. Different solvents and temperatures were used in the extraction process, and the antioxidant and antimicrobial activity of the extracts were assessed. The most bioactive extracts were selected for the development of the edible coatings. The rheological properties of the coatings were studied, and they were applied on strawberry to evaluate their physicochemical and microbiological properties. The addition of licorice extract to chitosan resulted in positive effects on the rheological properties of the coatings: the incorporation of phytochemicals to chitosan decreased the shear stress and improved the restructuring ability of the coating solutions. The films presented a reduction of the Burger model parameter, indicating a reduction of rigidity. Furthermore, the strawberry coated with chitosan and licorice extract maintained good quality parameters during storage and showed the best microbiological preservation in comparison with controls. Hence, the use of chitosan with licorice extract is a potential strategy to produce edible coating for improving the postharvest quality of fruits.


1960 ◽  
Vol 13 (1) ◽  
pp. 104
Author(s):  
LF Notley ◽  
GL Wilson

The accumulation of nitrate in the leaf tissue of nitrate-supplied, molybdenumdeficient plants has been suspected as a cause of the scorching symptoms which frequently develop (e.g. Agarwala 1952; Agarwala and Hewitt 1952; Hewitt and McCready 1953). Quantitative studies of the relationship between nitrate content and the symptoms have, however, been inconclusive. The literature suggests (cf. Wilson and Waring 1948; Johnson, Pearson, and Stout 1952) that this may follow from the estimation of nitrate in whole leaf tissue rather than in damaged portions.


Agriculture ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 574
Author(s):  
Filippos Bantis ◽  
Mariangela Fotelli ◽  
Zoran S. Ilić ◽  
Athanasios Koukounaras

Spinach is a leafy vegetable containing a plethora of bioactive compounds. Our study aimed to evaluate the physiological (i.e., JIP-test) and phytochemical response of spinach baby leaves grown with regular or mildly saline (40 mM NaCl) nutrient solution and irradiated by four light-emitting diodes (LEDs) with broad spectra. T1 (highest red and far-red, low blue) and T3 (high red, balanced blue, green and far-red) led to a better developed photosynthetic apparatus compared to T2 (red peak in 631 nm) and T4 (highest blue and green), highlighted by PIABS and its structural components: RC/ABS, φP0, ψE0, and ΔVIP. Elevated salinity only affected the latter parameter. T1 induced the maximum yield production but also the highest nitrate content which was far below the maximum level permitted by European legislation. Regardless of salinity level, T3 enhanced total phenol, chlorophyll, and carotenoid content. T2 and T4 led to inferior nutritional quality. Non-saline nutrient solution promoted the chlorophyll and carotenoid contents and the antioxidant potential, regardless of light treatment. By contrast, soluble sugar content was enhanced by saline nutrient solution. Our study shows that physiology and nutritional quality of spinach baby leaves can be manipulated by small interplays in the light spectra and salinity level.


Foods ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 677 ◽  
Author(s):  
Onofrio Davide Palmitessa ◽  
Massimiliano Renna ◽  
Pasquale Crupi ◽  
Angelo Lovece ◽  
Filomena Corbo ◽  
...  

Microgreens are gaining more and more interest, but little information is available on the effects of the chemical composition of the nutrient solution on the microgreen yield. In this study, three Brassica genotypes (B. oleracea var. italica, B. oleracea var. botrytis, and Brassica rapa L. subsp. sylvestris L. Janch. var. esculenta Hort) were fertigated with three modified strength Hoagland nutrient solutions (1/2, 1/4, and 1/8 strength) or with three modified half-strength Hoagland nutrient solutions with three different NH4:NO3 molar ratios (5:95, 15:85, and 25:75). Microgreen yields and content of inorganic ions, dietary fiber, proteins, α-tocopherol, and β-carotene were evaluated. Micro cauliflower showed the highest yield, as well as a higher content of mineral elements and α-tocopherol (10.4 mg 100 g−1 fresh weight (FW)) than other genotypes. The use of nutrient solution at half strength gave both a high yield (0.23 g cm−2) and a desirable seedling height. By changing the NH4:NO3 molar ratio in the nutrient solution, no differences were found on yield and growing parameters, although the highest β-carotene content (6.3 mg 100 g−1 FW) was found by using a NH4:NO3 molar ratio of 25:75. The lowest nitrate content (on average 6.8 g 100 g−1 dry weight) was found in micro broccoli and micro broccoli raab by using a nutrient solution with NH4:NO3 molar ratios of 25:75 and 5:95, respectively. Micro cauliflower fertigated with a NH4:NO3 molar ratio of 25:75 showed the highest dry matter (9.8 g 100 g−1 FW) and protein content (4.2 g 100 g−1 FW).


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Yafei Li ◽  
Hongzhi Shi ◽  
Huijuan Yang ◽  
Jun Zhou ◽  
Jing Wang ◽  
...  

Tobacco-specific nitrosamines (TSNAs) are harmful carcinogens, with nitrate as a precursor of their formation. Nitrate content is considerably higher in burley tobacco than in flue-cured tobacco, but little has been reported on the differences between types of nitrate accumulation during development. We explored nitrate accumulation prior to harvest and examined the effects of regulatory substances aimed at decreasing nitrate and TSNA accumulation. In growth experiments, nitrate accumulation in burley and flue-cured tobacco initially increased but then declined with the highest nitrate content observed during a fast-growth period. When treating tobacco crops with molybdenum (Mo) during fast growth, nitrate reductase activity in burley tobacco increased significantly, but the NO3-N content decreased. These treatments also yielded significant reductions in NO3-N and TSNA contents. Therefore, we suggest that treatment with Mo during the fast-growth period and a Mo-Gfo (Mo-glufosinate) combination at the maturity stage is an effective strategy for decreasing nitrate and TSNAs during cultivation.


Foods ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 732
Author(s):  
Zhonghua Bian ◽  
Yu Wang ◽  
Xiaoyan Zhang ◽  
Tao Li ◽  
Steven Grundy ◽  
...  

Excessive accumulation of nitrates in vegetables is a common issue that poses a potential threat to human health. The absorption, translocation, and assimilation of nitrates in vegetables are tightly regulated by the interaction of internal cues (expression of related genes and enzyme activities) and external environmental factors. In addition to global food security, food nutritional quality is recognized as being of strategic importance by most governments and other agencies. Therefore, the identification and development of sustainable, innovative, and inexpensive approaches for increasing vegetable production and concomitantly reducing nitrate concentration are extremely important. Under controlled environmental conditions, optimal fertilizer/nutrient element management and environmental regulation play vital roles in producing vegetables with low nitrate content. In this review, we present some of the recent findings concerning the effects of environmental factors (e.g., light, temperature, and CO2) and fertilizer/nutrient solution management strategies on nitrate reduction in vegetables grown under controlled environments and discuss the possible molecular mechanisms. We also highlight several perspectives for future research to optimize the yield and nutrition quality of leafy vegetables grown in controlled environments.


Sign in / Sign up

Export Citation Format

Share Document