scholarly journals The impact of water users’ associations on the productivity of irrigated agriculture in Pakistani Punjab

2015 ◽  
Vol 40 (5-6) ◽  
pp. 733-747 ◽  
Author(s):  
Dawit K. Mekonnen ◽  
Hira Channa ◽  
Claudia Ringler
Author(s):  
Dalia M. Gouda

This chapter outlines the general conclusions of the research and the book based on the analysis of the four case study areas in Egypt. It also provides the basis for thoughts about a more realistic and critical consideration of social capital theories into the mainstream of community-based natural resource management in general, and irrigation management transfer in particular. The research undertaken for this book show that it was worthwhile to develop a comprehensive conceptual framework for the analysis of social capital to use in place of Putnam's theory and approach, which romanticize traditional village organizations and cannot satisfactorily explain the complexity observed in the case study areas. The findings also provided key lessons to keep in mind when establishing and supporting water users' associations (WUA) at the level of tertiary and branch canals. Among these are the impact of improvements to irrigation infrastructure on farmers' behavior and the functioning of WUAs on the tertiary canal, namely that reducing face-to-face interactions reduces the creation of social capital, social control, and collective action; and that cooperation is not only dependent on the availability of water but is also affected by the autonomy of the irrigation water management field and the assignment of water rights.


Author(s):  
I. Saakian ◽  
Aleksandr, Grigor’ev ◽  
E. Kravets ◽  
E. Rudakov ◽  
A. Faddeev ◽  
...  

Выполнен анализ действующей редакции Методики разработки нормативов допустимых сбросов веществ и микроорганизмов в водные объекты для водопользователей , утвержденной приказом Минприроды России от 17 декабря 2007 г. 333, на предмет непротиворечивости и соответствия нормам водоохранного законодательства. Выявлена неопределенность применения Методики в условиях воздействия на качество воды природных и антропогенных факторов, не зависящих от конкретного водопользователя. Положения Методики противоречат принципам нормирования воздействия на водные объекты на основе наилучших доступных технологий, что было показано на примерах утвержденных технологических показателей содержания загрязняющих веществ в сточных водах различных отраслей промышленности. Анализ системы нормирования допустимых воздействий на водные объекты и географической дифференциации нормативов качества воды в пределах Российской Федерации вместе с системой целевых показателей качества воды также показал несоответствие Методики основным принципам водоохранного законодательства.The analysis of the current edition of the Methods of developing standards for permissible discharges of substances and microorganisms into water bodies for water users , approved by the Order of the Ministry of Natural Resources of Russia dated December 17, 2007 No. 333 for consilience and compliance with the regulations of the water protection legislation, is carried out. Uncertainty of the application of the Methods in the conditions of the impact of natural and anthropogenic factors that are independent of a specific water user on the quality of water has been identified. The provisions of the Methods contradict the principles of regulating the impact on water bodies based on the best available technologies shown on the examples of approved process indicators of the concentrations of various industrial pollutants in wastewater. An analysis of the system of regulating the permissible impact on water bodies and the geographical differentiation of water quality standards within the boundaries of the Russian Federation, together with the system of water quality targets, also showed that the Methods do not comply with the basic principles of the water protection legislation.


2021 ◽  
Author(s):  
Sandra Pool ◽  
Félix Francés ◽  
Alberto Garcia-Prats ◽  
Manuel Pulido-Velazquez ◽  
Carles Sanichs-Ibor ◽  
...  

<p>Irrigated agriculture is the major water consumer in the Mediterranean region. Improved irrigation techniques have been widely promoted to reduce water withdrawals and increase resilience to climate change impacts. In this study, we assess the impact of the ongoing transition from flood to drip irrigation on future hydroclimatic regimes in the agricultural areas of Valencia (Spain). The impact assessment is conducted for a control period (1971-2000), a near-term future (2020-2049) and a mid-term future (2045-2074) using a chain of models that includes five GCM-RCM combinations, two emission scenarios (RCP 4.5 and RCP 8.5), two irrigation scenarios (flood and drip irrigation), and twelve parameterizations of the hydrological model Tetis. Results of this modelling chain suggest considerable uncertainties regarding the magnitude and sign of future hydroclimatic changes. Yet, climate change could lead to a statistically significant decrease in future groundwater recharge of up -6.6% in flood irrigation and -9.3% in drip irrigation. Projected changes in actual evapotranspiration are as well statistically significant, but in the order of +1% in flood irrigation and -2.1% in drip irrigation under the assumption of business as usual irrigation schedules. The projected changes and the related uncertainties will pose a challenging context for future water management. However, our findings further indicate that the effect of the choice of irrigation technique may have a greater impact on hydroclimate than climate change alone. Explicitly considering irrigation techniques in climate change impact assessment might therefore be a way towards better informed decision-making.</p><p>This study has been supported by the IRRIWAM research project funded by the Coop Research Program of the ETH Zurich World Food System Center and the ETH Zurich Foundation, and by the ADAPTAMED (RTI2018-101483-B-I00) and TETISCHANGE (RTI2018-093717-B-I00) research projects funded by the Ministerio de Economia y Competitividad (MINECO) of Spain including EU FEDER funds.</p>


2021 ◽  
Author(s):  
Markus Todt ◽  
Pier Luigi Vidale ◽  
Patrick C. McGuire ◽  
Omar V. Müller

<p>Capturing soil moisture-atmosphere feedbacks in a weather or climate model requires realistic simulation of various land surface processes. However, irrigation and other water management methods are still missing in most global climate models today, despite irrigated agriculture being the dominant land use in parts of Asia. In this study, we test the irrigation scheme available in the land model JULES (Joint UK Land Environment Simulator) by running land-only simulations over South and East Asia driven by WFDEI (WATCH Forcing Data ERA-Interim) forcing data. Irrigation in JULES is applied on a daily basis by replenishing soil moisture in the upper soil layers to field capacity, and we use a version of the irrigation scheme that extracts water for irrigation from groundwater and rivers, which physically limits the amount of irrigation that can be applied. We prescribe irrigation for C3 grasses in order to simulate the effects of agriculture, albeit retaining the simpler, widely used 5-PFT (plant functional type) configuration in JULES. Irrigation generally increases soil moisture and evapotranspiration, which results in increasing latent heat fluxes and decreasing sensible heat fluxes. Comparison with combined observational/machine-learning products for turbulent fluxes shows that while irrigation can reduce biases, other biases in JULES, unrelated to irrigation, are larger than improvements due to the inclusion of irrigation. Irrigation also affects water fluxes within the soil, e.g. runoff and drainage into the groundwater level, as well as soil moisture outside of the irrigation season. We find that the irrigation scheme, at least in the uncoupled land-atmosphere setting, can rapidly deplete groundwater to the point that river flow becomes the main source of irrigation (over the North China Plain and the Indus region) and can have the counterintuitive effect of decreasing annual average soil moisture (over the Ganges plain). Subsequently, we will explore the impact of irrigation on regional climate by conducting coupled land-atmosphere simulations.</p>


Author(s):  
Erol H. Cakmak

Irrigated agriculture in Turkey currently consumes 75 percent of the total water consumption, which corresponds to about 30 percent of the renewable water supply. Unfavorable future global climate and economic conditions will increase the stress in the water sector. The operation and maintenance (O&M) of almost all large surface irrigation schemes developed by the state has been transferred to irrigation associations governed by the farmers. The purpose of this paper is to provide an overview of irrigation management practices and an evaluation of irrigation water pricing after the transfer using price data at the association level since 1999. Results indicate that both irrigation water charges and collection rates increased following the transfer. However, the recuperation of investment costs for irrigation development from the users has remained minimal. The price of the irrigation water continued to be on per hectare basis, and farmers using pumping water face 2.5 times higher water charge per hectare then the gravity water users. The uptake of more efficient water application technology accompanied by pricing mechanisms reflecting scarcity value of water will certainly ease the adjustment burden of the irrigation sector in the future.


Author(s):  
Erol H. Cakmak

Irrigated agriculture in Turkey currently consumes 75 percent of the total water consumption, which corresponds to about 30 percent of the renewable water supply. Unfavorable future global climate and economic conditions will increase the stress in the water sector. The operation and maintenance (O&M) of almost all large surface irrigation schemes developed by the state has been transferred to irrigation associations governed by the farmers. The purpose of this paper is to provide an overview of irrigation management practices and an evaluation of irrigation water pricing after the transfer using price data at the association level since 1999. Results indicate that both irrigation water charges and collection rates increased following the transfer. However, the recuperation of investment costs for irrigation development from the users has remained minimal. The price of the irrigation water continued to be on per hectare basis, and farmers using pumping water face 2.5 times higher water charge per hectare then the gravity water users. The uptake of more efficient water application technology accompanied by pricing mechanisms reflecting scarcity value of water will certainly ease the adjustment burden of the irrigation sector in the future.


Author(s):  
Elizabeth Hemming-Schroeder ◽  
Daibin Zhong ◽  
Solomon Kibret ◽  
Amanda Chie ◽  
Ming-Chieh Lee ◽  
...  

Abstract To improve food security, investments in irrigated agriculture are anticipated to increase throughout Africa. However, the extent to which environmental changes from water resource development will impact malaria epidemiology remains unclear. This study was designed to compare the sensitivity of molecular markers used in deep amplicon sequencing for evaluating malaria transmission intensities and to assess malaria transmission intensity at various proximities to an irrigation scheme. Compared to ama1, csp, and msp1 amplicons, cpmp required the smallest sample size to detect differences in infection complexity between transmission risk zones. Transmission intensity was highest within 5 km of the irrigation scheme by polymerase chain reaction positivity rate, infection complexity, and linkage disequilibrium. The irrigated area provided a source of parasite infections for the surrounding 2- to 10-km area. This study highlights the suitability of the cpmp amplicon as a measure for transmission intensities and the impact of irrigation on microgeographic epidemiology of malaria parasites.


Sign in / Sign up

Export Citation Format

Share Document